<< Chapter < Page Chapter >> Page >
In this lab, we will learn the basics of optimizing code intended for embedded systems.

Low power modes and code optimization

Fibonacci optimization

The " Reducing Power Consumption " module discusses why it is important to keep power in mind when programming embedded devices. We have yet to consider this while programming the previous labs. Writing efficient code is the first step in improving power consumption, next we can disable all parts of the board that aren't currently being used.

Take the following piece of code: long fibo(int n) { if (n < 2) return n; else return fibo(n-1) + fibo(n-2); } It recursively calculate the nth number in a Fibonacci sequence recursively. Recursion makes this piece of code easier to read, however, it is very inefficient and consumes far more memory than it has to. If you try to compute a large number, say fibo(50) , then it will take much longer and will consume more power than it should.

The original program is very inefficient and wastes memory in several of the ways described in the inefficient Memory Conservation module. Modify the code to eliminate the memory waste and improve the speed of the program. Note that there is a tradeoff between speed and memory (though at first the program is simply gratuitously wasteful). What is the nature of the tradeoff? Assuming the one addition takes one cycle to complete, how long would it take the original code to complete fibo(50) ? How long would it take your new, improved version? Assume that you are only considering the addition operations.

Got questions? Get instant answers now!

Low power modes

Modify your project so that the processor remains in one of the low power modes whenever it is not doing any calculations. Wake up from low power mode when a pushbutton interrupt fires, and have your program compute fibo(50) . Output the result to the standard out display. What is the result? (Hint: 12,586,269,025) Make the result is correct number. As soon as the calculation is done, return to low power mode. Make sure to turn on the Red LED while in an idle state.

A number must be small enough to fit in its given type. If it is too large, you may get unpredictable results. Try using a long long for extra huge numbers. If your standard out does not support such large data types then you may have to use bit-wise operations to separate the number into smaller chunks suitable for printing.

Measure the power consumed by the entire device when you are in low power mode and when it is computing something. You may want to have the processor compute something indefinitely, in order to get a more accurate result.

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Microcontroller and embedded systems laboratory. OpenStax CNX. Feb 11, 2006 Download for free at http://cnx.org/content/col10215/1.29
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microcontroller and embedded systems laboratory' conversation and receive update notifications?

Ask