Mathematics
Common fractions
Educator section
Memorandum
18.1
ADDITION
1
2
size 12{ { { size 8{1} } over { size 8{2} } } } {} +
1
2
size 12{ { { size 8{1} } over { size 8{2} } } } {} +
1
2
size 12{ { { size 8{1} } over { size 8{2} } } } {} +
1
2
size 12{ { { size 8{1} } over { size 8{2} } } } {} +
1
2
size 12{ { { size 8{1} } over { size 8{2} } } } {}
1
4
size 12{ { { size 8{1} } over { size 8{4} } } } {} +
1
4
size 12{ { { size 8{1} } over { size 8{4} } } } {} +
1
4
size 12{ { { size 8{1} } over { size 8{4} } } } {} +
1
4
size 12{ { { size 8{1} } over { size 8{4} } } } {} +
1
4
size 12{ { { size 8{1} } over { size 8{4} } } } {} +
1
4
size 12{ { { size 8{1} } over { size 8{4} } } } {}
3
7
size 12{ { { size 8{3} } over { size 8{7} } } } {} +
3
7
size 12{ { { size 8{3} } over { size 8{7} } } } {}
2
3
size 12{ { { size 8{2} } over { size 8{3} } } } {} +
2
3
size 12{ { { size 8{2} } over { size 8{3} } } } {} +
2
3
size 12{ { { size 8{2} } over { size 8{3} } } } {}
2
5
size 12{ { { size 8{2} } over { size 8{5} } } } {} +
2
5
size 12{ { { size 8{2} } over { size 8{5} } } } {} +
2
5
size 12{ { { size 8{2} } over { size 8{5} } } } {} +
2
5
size 12{ { { size 8{2} } over { size 8{5} } } } {}
PRODUCT
2
1
2
size 12{ { { size 8{1} } over { size 8{2} } } } {}
1
1
2
size 12{ { { size 8{1} } over { size 8{2} } } } {}
6
7
size 12{ { { size 8{6} } over { size 8{7} } } } {}
2
1
3
5
size 12{ { { size 8{3} } over { size 8{5} } } } {}
b) numerators x numerators
denominators x denominators
d)
(i)
21
10
size 12{ { { size 8{"21"} } over { size 8{"10"} } } } {}
= 2
1
10
size 12{ { { size 8{1} } over { size 8{"10"} } } } {}
(ii)
12
3
size 12{ { { size 8{"12"} } over { size 8{3} } } } {}
= 4
(iii)
84
9
size 12{ { { size 8{"84"} } over { size 8{9} } } } {}
= 9
1
3
size 12{ { { size 8{1} } over { size 8{3} } } } {}
18.2 3 1 2 8
(i)
15 x
4 (ii)
18 x
40
8 5 25 27
2 1 5 3
k =
3
2
size 12{"" lSub { size 8{ {} rSub {} rSup {} } } lSup {} { {3} over {2} } } {} = 1
1
2
size 12{ { { size 8{1} } over { size 8{2} } } } {}
c =
16
15
size 12{ { { size 8{"16"} } over { size 8{"15"} } } } {} = 1
1
15
size 12{ { { size 8{1} } over { size 8{"15"} } } } {}
7 4 3
18.3 b) (i) =
38 x
16 (ii) =
17 x
9
4 5 3 10
m = 28
n =
51
10
size 12{ { { size 8{"51"} } over { size 8{"10"} } } } {}
n =
5
1
10
size 12{5 { { size 8{1} } over { size 8{"10"} } } } {}
6
(iii) =
18 x
8
5 3
1
=
48
5
size 12{ { { size 8{"48"} } over { size 8{5} } } } {}
p = 9
3
5
size 12{ { { size 8{3} } over { size 8{5} } } } {}
19.1
a) 1
b) 1
c) 1
d) 1
19.2
Product is 1 every time
19.4 a)
20
17
size 12{ { { size 8{"20"} } over { size 8{"17"} } } } {}
b)
1
40
size 12{ { { size 8{1} } over { size 8{"40"} } } } {}
c)
5
31
size 12{ { { size 8{5} } over { size 8{"31"} } } } {}
d)
8
73
size 12{ { { size 8{8} } over { size 8{"73"} } } } {}
19.5 c)
5
31
size 12{ { { size 8{5} } over { size 8{"31"} } } } {} : First make an improper fraction (
31
5
size 12{ { { size 8{"31"} } over { size 8{5} } } } {} )
d)
8
73
size 12{ { { size 8{8} } over { size 8{"73"} } } } {} : First make an improper fraction (
73
8
size 12{ { { size 8{"73"} } over { size 8{8} } } } {} )
20. a) 1
2
3
size 12{ { { size 8{2} } over { size 8{3} } } } {} x
1
2
size 12{ { { size 8{1} } over { size 8{2} } } } {}
=
5
3
size 12{ { { size 8{5} } over { size 8{3} } } } {} x
1
2
size 12{ { { size 8{1} } over { size 8{2} } } } {}
=
5
6
size 12{ { { size 8{5} } over { size 8{6} } } } {} m = 83,
3
.
size 12{ {3} cSup { size 8{ "." } } } {} cm
b)
5
6
size 12{ { { size 8{5} } over { size 8{6} } } } {} x
1
3
size 12{ { { size 8{1} } over { size 8{3} } } } {} =
5
18
size 12{ { { size 8{5} } over { size 8{"18"} } } } {} m
= 27,
7
.
size 12{ {7} cSup { size 8{ "." } } } {} cm
22.
(a) 32
(b) 15
(c) 25
(d) 25
(e) 45
(f) 2
(g) 8
(h) 7
(i) 7
(j) 6
(k) 6
(l) 8
(m) 8
(n) 8
(o) 100
Leaner section
Content
Activity: multiplication of fractions [lo 1.7.3, lo 2.1.5]
18. MULTIPLICATION OF FRACTIONS
18.1 Multiplication of fractions with natural numbers
You already know that multiplication is repeated addition.
a) See if you can complete the following table:
SUM
SKETCH
REPEATED ADDITION
PRODUCT
e.g.
5 ×
1
2
size 12{ { { size 8{1} } over { size 8{2} } } } {}
1
2
+
1
2
+
1
2
+
1
2
+
1
2
size 12{ { { size 8{1} } over { size 8{2} } } + { { size 8{1} } over { size 8{2} } } + { { size 8{1} } over { size 8{2} } } + { { size 8{1} } over { size 8{2} } } + { { size 8{1} } over { size 8{2} } } } {}
2
1
2
size 12{2 { { size 8{1} } over { size 8{2} } } } {}
6 ×
1
4
size 12{ { { size 8{1} } over { size 8{4} } } } {}
..................................................
.................
2 ×
3
7
size 12{ { { size 8{3} } over { size 8{7} } } } {}
..................................................
.................
3 ×
2
3
size 12{ { { size 8{2} } over { size 8{3} } } } {}
..................................................
.................
4 ×
2
5
size 12{ { { size 8{2} } over { size 8{5} } } } {}
..................................................
.................
b) Look carefully at the completed table. Can you think of a shorter way/method to find the answers?
..........................................................................................................................................
..........................................................................................................................................
..........................................................................................................................................
c) TAKE NOTE!
You could also follow this method:
1. Write both numbers as fractions e.g.
6
×
1
4
=
6
1
×
1
4
size 12{6 times { { size 8{1} } over { size 8{4} } } = { { size 8{6} } over { size 8{1} } } times { { size 8{1} } over { size 8{4} } } } {}
2. Multiply the numerators: 6 × 1 = 6
3. Multiply the denominators: 1 × 4 = 4
4. Simplify the answer:
6
4
=
1
2
4
=
1
1
2
size 12{ { { size 8{6} } over { size 8{4} } } =1 { { size 8{2} } over { size 8{4} } } =1 { { size 8{1} } over { size 8{2} } } } {}
d) Calculate:
(i)
7
×
3
10
size 12{7 times { { size 8{3} } over { size 8{"10"} } } } {}
___________________________________________________
___________________________________________________
___________________________________________________
___________________________________________________
(ii)
2
3
×
6
size 12{ { { size 8{2} } over { size 8{3} } } times 6} {}
___________________________________________________
___________________________________________________
___________________________________________________
___________________________________________________
(iii)
12
×
7
9
size 12{"12" times { { size 8{7} } over { size 8{9} } } } {}
___________________________________________________
___________________________________________________
___________________________________________________
___________________________________________________
e) We would represent
6
×
1
4
size 12{6 times { { size 8{1} } over { size 8{4} } } } {} in another way using a number line:
f) Represent the following on a number line:
x
=
4
×
2
3
size 12{x=4 times { { size 8{2} } over { size 8{3} } } } {}
18.2 Multiplying fractions with fractions
a) Look carefully at the following examples:
(i) Half (
1
2
size 12{ { { size 8{1} } over { size 8{2} } } } {} ) of three quarters (
3
4
size 12{ { { size 8{3} } over { size 8{4} } } } {} ) can be shown like this: