<< Chapter < Page Chapter >> Page >
Using the MSP-EXP430FG4618 Development Tool and the MSP430FG4618 device present a message on the LCD Basic Timer1.

Laboratory lcd controller: lab1 - lcd message display

Introduction

This hands-on laboratory consists of configuring the LCD_A controller of the MSP430FG4618 device of the Experimenter’s board to display a message on the LCD display. This laboratory has been developed for Code Composer Essentials version 3 software development tool only.

Overview

This laboratory will explore the LCD_A controller of the MSP430FG4618 device included on the Experimenter’s board. This application ( Lab1_LCD.c ) demonstrates the activation of various LCD segments.

Resources

The Experimenter’s board uses a LCD, which does not have its own controller. The operation is controlled by MSP430FG4618.

The interface between these two components is described in the Experimenter’s Board datasheet slau213a.pdf

It is also recommended that the LCD datasheet be read.

Based on this information, it is possible to define the values to write to each of the memory registers to turn on the desired segments, or to set several of them, as is the case with numbers. The definitions are listed in LCD_defs.h .

From analysis of the Experimenter’s Board schematics, it can be seen that there is a 10 µF between the LCDCAP pin and ground, which means it is possible to use the charge pump.

The segments shared by the I/O function are not used by the LCD, being connected to the segments S4 to S25. The four lines COM0, COM1, COM2, and COM3 are used. The last three lines are shared by ports P5.2, P5.3 and P5.4, respectively. The LCD is operated in 4-mux mode.

The pins R03, R13, R23 and LCDCAP\R33 are used to provide the V5, V4, V3, V2 and V1 (V LCD ) voltages, using an external resistor network. They are available at Header H5.

In the current Experimenter’s Board configuration, it is possible to select the AV ss or charge pump to provide the V1 (V LCD ), V2, V3, V4 and V5 voltages. These voltages are only generated when LCD_A module and the ACLK clock are active. This allows the use of low power mode 3 (LPM3).

Timer_A, together with the TACCR0 unit are used to generate an interrupt once every second. LED1 and LED2 are switched at each Timer_A interrupt.

The push button SW1 is used to change the value of voltage generated by the charge pump. The push button SW2 is used to change the LCD frequency.

Software application organization

The application starts by configuring the Ports P5.2, P5.3, P5.4 to special function COM1, COM2 and COM3, respectively. The function of COM0 is not shared with the digital I/O functions.

Then, the pins with multiplexed functions are selected to perform the functions necessary to control the LCD segments.

The LCD_A control register and the voltage configuration register are also configured.

There then follows the execution of the LCD clear routine LCD_all_off() , which ensures that all segments of the LCD are off.

Timer_A is configured with its TACCRO unit to generate an interrupt once every second. The ISR generates the memory clock with msec , sec and min , and also connects/disconnects the remaining LCD symbols.

The port pins P2.1 and P2.2 drive LED2 and LED1, respectively. Hence, these ports are configured as digital outputs.

Push buttons SW1 and SW2 have the capacity to generate an interrupt through a change at ports P1.0 and P1.2 respectively. The interrupt ISR, after decoding its source, modifies the LCD operation frequency or modifies the VLCD voltage.

Finally, all the interrupts are activated and the system enters low power mode LPM3.

System configuration

Lcd_a interface with the lcd configuration

Select the function COM1, COM2 and COM3. What is the value to write to these registers?

P5DIR |= 0x1E; // Ports P5.2, P5.3 and P5.4 as outputs P5SEL |= 0x1E; // Ports P5.2, P5.3 and P5.4 as special function (COM1, COM2 and COM3)

The LCD segments are controlled by the S4 to S25 LCD memory segments. Activate these segments by writing to correct value to the following register:

LCDAPCTL0 = LCDAPCTL0 = LCDS24 | LCDS20 | LCDS16 | LCDS12 | LCDS8 | LCDS4; // Enable S4 to S25

Lcd operation frequency

The LCD is to operate in 4-mux mode, with a 30 Hz to 100 Hz refresh frequency. It uses the following equation to determine the LCD operation frequency, f LCD :

f LCD = 2 x mux x f frame

Choose the frequency that provides greatest energy savings.

Lcd_a configuration

The LCD_A module is to be activated in 4-mux mode from a 32768 Hz clock. What value should be written to the following register?

LCDACTL = LCDFREQ_192 | LCD4MUX; // (ACLK = 32768)/192 // and 4-mux LCDLCDACTL |= LCDSON | LCDON; // LCD_A and Segments on

Use the charge pump to internally generate all the voltages necessary for the operation of the LCD, using a bias 1/3. What is the value to write to the register?

LCDAVCTL0 = LCDCPEN; // Charge pump enable

The charge pump generates a LCD voltage of 3.44 volts. Configure the following register:

LCDAVCTL1 = VLCD_3_44; // VLCD = 3.44 V

Timer_a configuration

The Timer_A generates an interrupt once every second. It uses the TACCR0 unit. Configure the following registers:

TACCTL0 = CCIE; // TACCR0 interrupt enabled TACCR0 = 3268; // this count correspond to 1 msecTACTL = TASSEL_1 | MC_1 | ID_0; // ACLK, up mode

Output ports configuration

Configure the ports connected to LED1 and LED2 in order to make one of them active and the other inactive at system start up:

P2DIR |= 0x06; // P2.1 and P2.2 as output P2OUT |= 0x04; // LED2 off and LED1 on

Input ports configuration

The push buttons SW1 and SW2 generate an interrupt on a low-to-high transition. Configure the necessary registers:

P1DIR&= ~0x03; // P1.0 and P1.1 digital inputs P1IES |= 0x03; // low-to-high transition interruptsP1IE |= 0x03; // enable port interrupts

Analysis of operation

Compile the project, load it into microcontroller’s memory and execute the application. For each value of the operating frequency and voltage generated by the charge pump, measure the electrical current consumption. Draw a graph of these results and draw conclusions concerning the energy consumption.

This example and many others are available on the MSP430 Teaching ROM.

Request this ROM, and our other Teaching Materials here (External Link)

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Teaching and classroom laboratories based on the “ez430” and "experimenter's board" msp430 microcontroller platforms and code composer essentials. OpenStax CNX. May 19, 2009 Download for free at http://cnx.org/content/col10706/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Teaching and classroom laboratories based on the “ez430” and "experimenter's board" msp430 microcontroller platforms and code composer essentials' conversation and receive update notifications?

Ask