<< Chapter < Page | Chapter >> Page > |
Trong việc khai thác các đài phát AM, người ta xem tầng phổ như là “ tài nguyên thiên nhiên “. Việc bảo quản cho nó là một chỉ tiêu quan trọng. Nếu khổ băng cần thiết cho mỗi kênh rộng quá, Thì số đài phát sóng cùng một lúc sẽ ít đi. Ta tìm một phương pháp có thể gởi thông tin mà khổ băng thì nhỏ hơn 2fm.
Truyền một băng cạnh là kỷ thuật cho phép truyền phân nữa khổ băng cần thiết cho AM hai băng cạnh.
Hình 4.39: Định nghĩa các cạnh băng
Hình 4.39 định nghĩa các băng cạnh. Phần của sm(t) nằm trong băng trên sóng mang gọi là băng cạnh trên ( upper - sideband ). Và phần ở dưới sóng mang gọi là băng cạnh dưới (lower - sideband). Một sóng AM 2 băng cạnh thì bao gồm cả băng cạnh trên và băng cạnh dưới.
Ta có thể dùng các tín chất của biến đổi F để chứng tỏ rằng 2 băng cạnh nầy phụ thuộc lẫn nhau. Biến đổi F của sóng AM được tạo nên bằng cách dời ( shifting ) S(f) lên và xuống, như đã biết. Băng cạnh dưới tạo nên do phần f âm của S(f); và băng cạnh trên do phần f dương của S(f). Ta giã sữ rằng tín tức s(t) là một hàm thực. Vậy suất của S(f) thì chẵn và pha thì lẽ. Phần f âm có thể suy từ f dương bằng cách lấy phức liên hợp.
Tương tự, băng cạnh dưới của sm(t) có thể suy từ băng cạnh trên. Vì các băng cạnh không độc lập, ta có thể truyền tất cả các thông tin cơ bản bằng cách gửi đi chỉ một băng cạnh.
Hình 4.40: Biến đổi F của các băng cạnh
Hình 4.40 chỉ biến đổi F của băng cạnh trên và băng cạnh dưới của sóng AM, lần lượt ký hiệu là susb(t) là slsb(t). Sóng AM 2 băng cạnh là tổng của 2 băng cạnh.
sm(t) = susb(t) + sLsb(t) (4.22)
Vì sóng SSB chỉ chiếm một phần của băng tần bị chiếm bỡi sóng DSB, nó thỏa 2 yêu cầu của một hệ biến điệu. Đó là, băng cạnh chọn tần số sóng mang riêng, ta có thể chuyển sóng biến điệu thành một khoản tần số, mà ở đó truyền đi một cách hiệu qủa. Ta cũng có thể dùng những băng khác nhau cho những tín hiệu khác nhau (tức fc khác nhau). Nên, cùng lúc có thể truyền đi nhiều tín hiệu (đa hợp).
Chỉ còn một vấn đề cần chứng tỏ. Đó là, thông tin gốc có thể được hồi phực từ sóng được biến điệu SSB. Và sóng biến điệu có thể được tạo ra bởi các mạch tương đối đơn giãn. Vậy ta xét đến các khối biến điệu và hoàn điệu.
Vì băng cạnh trên và băng cạnh dưới tách biệt về tần số, các mạch lọc có thể dùng để chọn băng cạnh mong muốn. Hình 4.41, chỉ khối biến điệu cho băng cạnh dưới (LSB). Có các cách để tạo băng cạnh trên (USB). Ta có thể hoặc thay đổi dãy thông của lọc BPF để chỉ nhận USB, hoặc có thể lấy hệ số giữa DSB và LSB.
Hình 4.41: Khối biến điệu cho LSB, SSB
Hình 4.42: Khối biến điệu cho USB, SSB
Các mạch lọc ở 2 hình bên phải thật chính xác, vì không có dãy tần bảo vệ nào giữa băng cạnh trên và băng cạnh dưới.
* Một phương pháp khác tạo ra SSB. Sơ đồ khối vẽ ỡ hình 43 ( dùng LSB - SSB ). Giã sữ s(t) là một Sinusoide thuần túy. Với trường hợp đơn giản nầy, sự phân tích chỉ cần đến lượng giác.
S(t) = cos2fCt
Sóng DSB Amcó dạng:
sm(t) = cos2fCt + cos2fCt
= (4.23)
Sự nhận dạng các băng cạnh trong trường hợp đơn giãn nầy thật rỏ ràng: Số hạng thứ nhất là băng cạnh dưới, số hạng thứ nhì là băng cạnh trên.
Notification Switch
Would you like to follow the 'Cơ sở viễn thông' conversation and receive update notifications?