<< Chapter < Page Chapter >> Page >

Examples of the z-transform

A few examples together with the above properties will enable one to solve and understand a wide variety of problems. These use the unit stepfunction to remove the negative time part of the signal. This function is defined as

u ( n ) = 1 if n 0 0 if n < 0

and several bilateral z-transforms are given by

  • Z { δ ( n ) } = 1 for all z .
  • Z { u ( n ) } = z z - 1 for | z | > 1 .
  • Z { u ( n ) a n } = z z - a for | z | > | a | .

Notice that these are similar to but not the same as a term of a partial fraction expansion.

Inversion of the z-transform

The z-transform can be inverted in three ways. The first two have similar procedures with Laplace transformations and the third has no counter part.

  • The z-transform can be inverted by the defined contour integral in the ROC of the complex z plane. This integral can be evaluated using the residue theorem [link] , [link] .
  • The z-transform can be inverted by expanding 1 z F ( z ) in a partial fraction expansion followed by use of tables for the first orsecond order terms.
  • The third method is not analytical but numerical. If F ( z ) = P ( z ) Q ( z ) , f ( n ) can be obtained as the coefficients of long division.

For example

z z - a = 1 + a z - 1 + a 2 z - 2 +

which is u ( n ) a n as used in the examples above.

We must understand the role of the ROC in the convergence and inversion of the z-transform. We must also see the difference between the one-sided andtwo-sided transform.

Solution of difference equations using the z-transform

The z-transform can be used to convert a difference equation into an algebraic equation in the same manner that the Laplace converts a differential equation in to an algebraic equation. The one-sided transform isparticularly well suited for solving initial condition problems. The two unilateral shift properties explicitly use the initial values of theunknown variable.

A difference equation DE contains the unknown function x ( n ) and shifted versions of it such as x ( n - 1 ) or x ( n + 3 ) . The solution of the equation is the determination of x ( t ) . A linear DE has only simple linear combinations of x ( n ) and its shifts. An example of a linear second order DE is

a x ( n ) + b x ( n - 1 ) + c x ( n - 2 ) = f ( n )

A time invariant or index invariant DE requires the coefficients not be a function of n and the linearity requires that they not be a function of x ( n ) . Therefore, the coefficients are constants.

This equation can be analyzed using classical methods completely analogous to those used with differential equations. A solution of the form x ( n ) = K λ n is substituted into the homogeneous difference equation resulting in a second order characteristic equation whose two roots givea solution of the form x h ( n ) = K 1 λ 1 n + K 2 λ 2 n . A particular solution of a form determined by f ( n ) is found by the method of undetermined coefficients, convolution or some other means. Thetotal solution is the particular solution plus the solution of the homogeneous equation and the three unknown constants K i are determined from three initial conditions on x ( n ) .

It is possible to solve this difference equation using z-transforms in a similar way to the solving of a differential equation by use of theLaplace transform. The z-transform converts the difference equation into an algebraic equation. Taking the ZT of both sides of the DE gives

Questions & Answers

how to create a software using Android phone
Wiseman Reply
how
basra
what is the difference between C and C++.
Yan Reply
what is software
Sami Reply
software is a instructions like programs
Shambhu
what is the difference between C and C++.
Yan
yes, how?
Hayder
what is software engineering
Ahmad
software engineering is a the branch of computer science deals with the design,development, testing and maintenance of software applications.
Hayder
who is best bw software engineering and cyber security
Ahmad
Both software engineering and cybersecurity offer exciting career prospects, but your choice ultimately depends on your interests and skills. If you enjoy problem-solving, programming, and designing software syste
Hayder
what's software processes
Ntege Reply
I haven't started reading yet. by device (hardware) or for improving design Lol? Here. Requirement, Design, Implementation, Verification, Maintenance.
Vernon
I can give you a more valid answer by 5:00 By the way gm.
Vernon
it is all about designing,developing, testing, implementing and maintaining of software systems.
Ehenew
hello assalamualaikum
Sami
My name M Sami I m 2nd year student
Sami
what is the specific IDE for flutter programs?
Mwami Reply
jegudgdtgd my Name my Name is M and I have been talking about iey my papa john's university of washington post I tagged I will be in
Mwaqas Reply
yes
usman
how disign photo
atul Reply
hlo
Navya
hi
Michael
yes
Subhan
Show the necessary steps with description in resource monitoring process (CPU,memory,disk and network)
samuel Reply
What is software engineering
Tafadzwa Reply
Software engineering is a branch of computer science directed to writing programs to develop Softwares that can drive or enable the functionality of some hardwares like phone , automobile and others
kelvin
if any requirement engineer is gathering requirements from client and after getting he/she Analyze them this process is called
Alqa Reply
The following text is encoded in base 64. Ik5ldmVyIHRydXN0IGEgY29tcHV0ZXIgeW91IGNhbid0IHRocm93IG91dCBhIHdpbmRvdyIgLSBTdGV2ZSBXb3puaWFr Decode it, and paste the decoded text here
Julian Reply
what to do you mean
Vincent
hello
ALI
how are you ?
ALI
What is the command to list the contents of a directory in Unix and Unix-like operating systems
George Reply
how can i make my own software free of cost
Faizan Reply
like how
usman
hi
Hayder
The name of the author of our software engineering book is Ian Sommerville.
Doha Reply
what is software
Sampson Reply
the set of intruction given to the computer to perform a task
Noor
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Brief notes on signals and systems. OpenStax CNX. Sep 14, 2009 Download for free at http://cnx.org/content/col10565/1.7
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Brief notes on signals and systems' conversation and receive update notifications?

Ask