<< Chapter < Page Chapter >> Page >

Active filters

As long as design requirements are met, the input-outputrelation for the inverting amplifier also applies when the feedback and input circuit elements are impedances (resistors,capacitors, and inductors).

Op-amp

V out V in Z F Z

Let's design an op-amp circuit that functions as a lowpassfilter. We want the transfer function between the output and input voltage to be H f K 1 f f c where K equals the passband gain and f c is the cutoff frequency. Let's assume that the inversion (negative gain) does not matter. With the transfer functionof the above op-amp circuit in mind, let's consider some choices.

  • Z F K , Z 1 f f c . This choice means the feedback impedance is a resistorand that the input impedance is a series combination of an inductor and a resistor. In circuit design, we try toavoid inductors because they are physically bulkier than capacitors.
  • Z F 1 1 f f c , Z 1 K . Consider the reciprocal of the feedback impedance (itsadmittance): Z F 1 f f c . Since this admittance is a sum of admittances, thisexpression suggests the parallel combination of a resistor (value = 1 Ω) and a capacitor (value = 1 f c F). We have the right idea, but the values (like 1 Ω)are not right. Consider the general R C parallel combination; its admittance is 1 R F 2 f C . Letting the input resistance equal R , the transfer function of the op-amp inverting amplifiernow is H f R F R 1 2 f R F C
R F R and the cutoff frequency 1 R F C .

Got questions? Get instant answers now!

Creating a specific transfer function with op-amps does not have a unique answer. As opposed to design with passive circuits,electronics is more flexible (a cascade of circuits can be built so that each has little effect on the others; see [link] ) and gain (increase in power and amplitude) can result. To complete our example,let's assume we want a lowpass filter that emulates what the telephone companies do. Signals transmitted over the telephonehave an upper frequency limit of about 3 kHz. For the second design choice, we require R F C 5.3 -5 . Thus, many choices for resistance and capacitance values arepossible. A 1 μF capacitor and a 330 Ω resistor, 10 nF and 33 kΩ, and 10 pF and 33 MΩ wouldall theoretically work. Let's also desire a voltage gain of ten: R F R 10 , which means R R F 10 . Recall that we must have R R in . As the op-amp's input impedance is about 1 MΩ, we don'twant R too large, and this requirement means that the last choice forresistor/capacitor values won't work. We also need to ask for less gain than the op-amp can provide itself. Because thefeedback "element" is an impedance (a parallel resistor capacitor combination), we need to examine the gainrequirement more carefully. We must have Z F R 10 5 for all frequencies of interest. Thus, R F 1 2 f R F C R 10 5 . As this impedance decreases with frequency, the designspecification of R F R 10 means that this criterion is easily met. Thus, the first two choices for the resistor and capacitor values (as well as manyothers in this range) will work well. Additional considerations like parts cost might enter into thepicture. Unless you have a high-power application (this isn't one) or ask for high-precision components, costs don't dependheavily on component values as long as you stay close to standard values. For resistors, having values r 10 d , easily obtained values of r are 1, 1.4, 3.3, 4.7, and 6.8, and the decades span 0-8.

What is special about the resistor values; why these rather odd-appearing values for r ?

The ratio between adjacent values is about 2 .

Got questions? Get instant answers now!

Intuitive way of solving op-amp circuits

When we meet op-amp design specifications, we can simplify our circuit calculations greatly, so much so that we don't needthe op-amp's circuit model to determine the transfer function. Here is our inverting amplifier.

Op-amp

Op-amp

When we take advantage of the op-amp'scharacteristics—large input impedance, large gain, and small output impedance—we note the two followingimportant facts.

  • The current i in must be very small. The voltage produced by the dependent source is 10 5 times the voltage v . Thus, the voltage v must be small, which means that i in v R in must be tiny. For example, if the output is about 1 V, the voltage v 10 5 V, making the current i in 10 11 A. Consequently, we can ignore i in in our calculations and assume it to be zero.
  • Because of this assumption—essentially no currentflow through R in —the voltage v must also be essentially zero. This means that in op-amp circuits, the voltage across the op-amp's input isbasically zero.

Armed with these approximations, let's return to our original circuit as shown in [link] . The node voltage e is essentially zero, meaning that it is essentially tied tothe reference node. Thus, the current through the resistor R equals v in R . Furthermore, the feedback resistor appears in parallel withthe load resistor. Because the current going into the op-amp is zero, all of the current flowing through R flows through the feedback resistor( i F i )! The voltage across the feedback resistor v equals v in R F R . Because the left end of the feedback resistor is essentiallyattached to the reference node, the voltage across it equals the negative of that across the output resistor: v out v v in R F R .Using this approach makes analyzing new op-amp circuits much easier. When using this technique, check to make sure theresults you obtain are consistent with the assumptions of essentially zero current entering the op-amp and nearly zerovoltage across the op-amp's inputs.

Two source circuit

Two-source, single-output op-amp circuit example.

Let's try this analysis technique on a simple extension of the inverting amplifier configuration shown in [link] . If either of the source-resistor combinations were notpresent, the inverting amplifier remains, and we know that transfer function. By superposition, we know that theinput-output relation is

v out R F R 1 v in ( 1 ) R F R 2 v in ( 2 )
When we start from scratch, the node joining the three resistors is at the same potential as the reference, e 0 , and the sum of currents flowing into that node iszero. Thus, the current i flowing in the resistor R F equals v in ( 1 ) R 1 v in ( 2 ) R 2 . Because the feedback resistor is essentially in parallelwith the load resistor, the voltages must satisfy v v out . In this way, we obtain the input-output relation given above.

What utility does this circuit have? Can the basic notion of the circuit be extended without bound?

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask