<< Chapter < Page Chapter >> Page >
This module describes the recursive generation of the impulse response of a second order system.

Introduction

This module examines the recursive generation of the impulse response of a second order system. This analysis can be used to determine how to generate a cosine or sine function recursively.

Second order systems

The transfer function of a general second order system is given as:

H ( z ) = b 0 z 2 + b 1 z + b 2 z 2 + a 1 z + a 2 size 12{H \( z \) = { {b rSub { size 8{0} } z rSup { size 8{2} } +b rSub { size 8{1} } z+b rSub { size 8{2} } } over {z rSup { size 8{2} } +a rSub { size 8{1} } z+a rSub { size 8{2} } } } } {}

The Direct Form II structure for the implementation of the second order system is shown in the following figure.

The difference equation for the second order system is

y ( n ) + a 1 y ( n 1 ) + a 2 y ( n 2 ) = b 0 x ( n ) + b 1 x ( n 1 ) + b 2 x ( n 2 ) size 12{y \( n \) +a rSub { size 8{1} } y \( n - 1 \) +a rSub { size 8{2} } y \( n - 2 \) =b rSub { size 8{0} } x \( n \) +b rSub { size 8{1} } x \( n - 1 \) +b rSub { size 8{2} } x \( n - 2 \) } {}
y ( n ) = a 1 y ( n 1 ) a 2 y ( n 2 ) = b 0 x ( n ) + b 1 x ( n 1 ) + b 2 x ( n 2 ) size 12{y \( n \) = - a rSub { size 8{1} } y \( n - 1 \) - a rSub { size 8{2} } y \( n - 2 \) =b rSub { size 8{0} } x \( n \) +b rSub { size 8{1} } x \( n - 1 \) +b rSub { size 8{2} } x \( n - 2 \) } {}

To recursively determine the impulse response of the system start with the following:

h ( 1 ) = h ( 2 ) = 0, x ( n ) = δ ( n ) size 12{h \( - 1 \) =h \( - 2 \) =0,x \( n \) =δ \( n \) } {}

Then using Equation 3 the impulse response can be found recursively by:

h ( 0 ) = a 1 h ( 1 ) a 2 h ( 2 ) + b 0 δ ( 0 ) + b 1 δ ( 1 ) + b 2 δ ( 2 ) = b 0 size 12{h \( 0 \) = - a rSub { size 8{1} } h \( - 1 \) - a rSub { size 8{2} } h \( - 2 \) +b rSub { size 8{0} } δ \( 0 \) +b rSub { size 8{1} } δ \( - 1 \) +b rSub { size 8{2} } δ \( - 2 \) =b rSub { size 8{0} } } {}
h ( 1 ) = a 1 h ( 0 ) a 2 h ( 1 ) + b 0 δ ( 1 ) + b 1 δ ( 0 ) + b 2 δ ( 1 ) size 12{h \( 1 \) = - a rSub { size 8{1} } h \( 0 \) - a rSub { size 8{2} } h \( - 1 \) +b rSub { size 8{0} } δ \( 1 \) +b rSub { size 8{1} } δ \( 0 \) +b rSub { size 8{2} } δ \( - 1 \) } {}
h ( 1 ) = a 1 b 0 + b 1 size 12{h \( 1 \) = - a rSub { size 8{1} } b rSub { size 8{0} } +b rSub { size 8{1} } } {}
h ( 2 ) = a 1 h ( 1 ) a 2 h ( 0 ) + b 0 δ ( 2 ) + b 1 δ ( 1 ) + b 2 δ ( 0 ) size 12{h \( 2 \) = - a rSub { size 8{1} } h \( 1 \) - a rSub { size 8{2} } h \( 0 \) +b rSub { size 8{0} } δ \( 2 \) +b rSub { size 8{1} } δ \( 1 \) +b rSub { size 8{2} } δ \( 0 \) } {}
h ( 2 ) = a 1 ( a 1 + b 1 ) a 2 b 0 + b 2 size 12{h \( 2 \) = - a rSub { size 8{1} } \( - a rSub { size 8{1} } +b rSub { size 8{1} } \) - a rSub { size 8{2} } b rSub { size 8{0} } +b rSub { size 8{2} } } {}

For the values of n >2 the recursive equation reduces to

h ( n ) = a 1 h ( n 1 ) a 2 h ( n 2 ) size 12{h \( n \) = - a rSub { size 8{1} } h \( n - 1 \) - a rSub { size 8{2} } h \( n - 2 \) } {}

because the values of x ( n ) , x ( n 1 ) size 12{x \( n \) ,x \( n - 1 \) } {} and x ( n 2 ) size 12{x \( n - 2 \) } {} will all be zero for n >2.

So, if you know the values of h ( 0 ) size 12{h \( 0 \) } {} and h ( 1 ) size 12{h \( 1 \) } {} , then the Equation 10 can be used to find future values of h ( n ) size 12{h \( n \) } {} .

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Dsp lab with ti c6x dsp and c6713 dsk. OpenStax CNX. Feb 18, 2013 Download for free at http://cnx.org/content/col11264/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Dsp lab with ti c6x dsp and c6713 dsk' conversation and receive update notifications?

Ask