<< Chapter < Page Chapter >> Page >
This module includes a brief introduction to metric spaces at a suitable level of detail for study of signals and systems.

Introduction

In may courses, concepts such as continuity and convergence are invoked without much discussion of their formal definitions, instead relying on the reader's intuitive understanding of these matters. However, for purposes of proofs, including some in the main body of material for this course, a greater rigor is required. This module will discuss metric spaces, a mathematical construct that provide a framework for the study continuity, convergence, and other related ideas in their most concrete but still formal senses. This is accomplished by formalizing a notion of the distance between two elements in a set. The intent in this and subsequent modules in this chapter is not to give a complete overview of the basic topics of analysis but to give a short introduction to those most important to discussion of signal processing in this course.

Metric spaces

A notion of distance

In many situations in signal processing it is often useful to have a concept of distance between the points in a set. This notion is mathematically formalized through the idea of a metric space. A metric space ( M , d ) is a set M together with a function d : M × M R that assigns distances between pairs of elements in M while satisfying three conditions. First, for every x , y M , d ( x , y ) 0 with d ( x , y ) = 0 if and only if x = y . Second, for every x , y M , d ( x , y ) = d ( y , x ) symmetrically. Third, for every x , y , z M , d ( x , y ) + d ( x , z ) d ( y , z ) , which is known as the triangle inequality.

There are, of course, several different possible choices of definitions for distances in a given set. Our typical intuitive understanding of distance in R n fits within this framework as the standard Euclidean metric

d ( x , y ) = | | x - y | | 2

as does the taxicab or Manhatten metric

d ( x , y ) = | | x - y | | 1

that sums individual components of vectors, representing, for example, distances traveled walking around city blocks. Another simple yet more exotic example is provided by the discrete metric on any set defined by

d ( x , y ) = 0 x = y 1 x y

in which all pairs of distinct points are equidistant from eachother but every point is distance zero from itself. One can check that these satisfy the conditions for metric spaces.

Relationship with norms

It is not surprising that norms, which provide a notion of size, and metrics, which provide a notion of distance, would have a close relationship. Intuitively, one way of defining the distance between two points in a metric space could be the size of their difference. In other words given a vector space V over the field F with norm | | · | | , we might ask if the function

d ( x , y ) = | | x - y | |

for every x , y V satisfies the conditions for ( V , d ) to be a metric space.

Let V be a vector space over the field F with norm | | · | | , and let d ( x , y ) = | | x - y | | . Recall that since | | · | | is a norm, | | x | | = 0 if and only if x = 0 and | | a x | | = | a | | | x | | for all a F and x V . Hence | | x - y | | 0 for all x , y V and | | x - y | | = 0 if and only if x = y . Since y - x = - ( x - y ) and | | - ( x - y ) | | = | | x - y | | it follows that | | x - y | | = | | y - x | | for all x , y V . Finally, | | x | | + | | y | | | | x + y | | by the properties of norms, so | | x - y | | + | | x - z | | | | y - z | | for all x , y , z V . Thus, ( V , d ) does indeed satisfy the conditions to be a metric space and is discussed as the metric space induced by the norm | | · | | .

Metric spaces summary

Metric spaces provide a notion of distance and a framework with which to formally study mathematical concepts such as continuity and convergence, and other related ideas. Many metrics can be chosen for a given set, and our most common notions of distance satisfy the conditions to be a metric. Any norm on a vector space induces a metric on that vector space and it is in these types of metric spaces that we are often most interested for study of signals and systems.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask