<< Chapter < Page Chapter >> Page >
This report summarizes work done as part of the Wavelet Based Image Analysis PFUG under Rice University's VIGRE program. VIGRE is a program of Vertically Integrated Grants for Research and Education in the Mathematical Sciences under the direction of the National Science Foundation. A PFUG is a group of Postdocs, Faculty, Undergraduates and Graduate students formed round the study of a common problem. This module introduces the redundant discrete wavelet transform as well as two level dependent estimators that could potentially be used for image denoising, the Bishrink algorithm and the Bayesian Least Squares-Gaussian Scale Mixture algorithm. A simulation designed to evaluate the efficacies of each of these methods for the purpose of denoising astronomical image data is described, and its results are presented and discussed.This Connexions module describes work conducted as part of Rice University's VIGRE program, supported by National Science Foundation grant DMS?0739420.

Introduction

The redundant wavelet transform (RWT) is widely used in order to denoise signals and images. Here, we consider two denoising methods used in the literature, to attempt to denoise astronomical images with the aim of obtaining images in which we can search for very faint objects that are not noise.

The paper is organized as follows. In "Redundant Wavelet Transform" , we introduce a few algorithms used to compute the RWT. In "Denoising Algorithms based on the RWT" , we discuss some denoising methods based on the RWT. In "Denoising Simulation" , a description of the simulation and the results from the implemented methods can be found, which are further discussed in "Conclusions" .

Redundant wavelet transform

Undecimated algorithm

The redundant discrete wavelet transform, similar in nature to the discrete wavelet transform, decomposes data into low-pass scaling (trend) and high-pass wavelet (detail) coefficients to obtain a projective decomposition of the data into different scales. More specifically, at each level the transform uses the scaling coefficients to compute the next level of scaling and wavelet coefficients. The difference lies in the fact that none of the latter are discarded through decimation as in the discrete wavelet transform but are instead retained, introducing a redundancy. This transform is good for denoising images, as the noise is usually spread over a small number of neighboring pixels. The Rice Wavelet Toolbox used to compute the transform in the simulation implements the redundant wavelet transform through the undecimated algorithm, which as its name suggests is similar to the discrete wavelet transform but omits downsampling, also known as decimation, in computation of the transform and upsampling in computation of the inverse transform .

A trous algorithm

Another method of computing the redundant wavelet transform, the a ´ trous algorithm differs from the undecimated algorithm by modifying the low-pass and high-pass filters at each consecutive level. The algorithm up-samples the low-pass filter at each level by inserting zeros between each of the filter's coefficients. The high-pass coefficients are then computed as the difference between the low-pass images from the two consecutive levels. To compute the inverse transform, the detail coefficients from all levels are added to the final low-resolution image . While inefficient in implementation, the a ´ trous algorithm provides additional insight into the redundant discrete wavelet transform.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, The art of the pfug. OpenStax CNX. Jun 05, 2013 Download for free at http://cnx.org/content/col10523/1.34
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'The art of the pfug' conversation and receive update notifications?

Ask