<< Chapter < Page Chapter >> Page >

Interpretation of complement

Proceeding as before we can read the conditional statement for the complement with the help of two ways arrow as :

x A x U a n d x A

In terms of minus or difference operation,

A = U A

It is clear from the representation on Venn’s diagram that the universal set comprises of two distinct sets – set A and complement set A’.

U = A A

Compliment of universal set

The complement of universal set is empty set. It is so because difference of union set with itself is the empty set (see Venn's diagram).

U = { x : x U a n d x U } = φ

Complement of empty set

The complement of the empty set is universal set. It is so because difference of union set with the empty set is universal set (see Venn's diagram).

φ = { x : x U a n d x φ } = U

Complement of complement set is set itself

The complement of complement set is set itself. The complement set is defined as :

A = U A

Now, complement of complement set is :

A = U A

Let us consider the example, where :

U = { 1,2,3,4,5,6,7,8 }

A = { 1,2,3,4,5,6 }

Then,

A = { 1,2,3,4,5,6,7,8 } - { 1,2,3,4,5,6 } = { 7,8 }

Again taking complement, we have :

A = { 1,2,3,4,5,6,7,8 } - { 7,8 } = { 1,2,3,4,5,6 } = A

Union with complement set

The union of a set with its complement is universal set :

A A = { x : x U a n d x A } { x : x U a n d x A } = U

From Venn’s diagram also, we see that universal set consists of set A and component A’.

U = A A

The two sets on the right side of the equation are disjoint sets. Hence,

A A = U

Intersection with complement set

There is nothing common between set A and its component A’. Thus, intersection of a set with its complement yields the empty set,

A A = φ

De-morgan’s laws

In the real world situation, we want to negate a condition of incidence. For example, consider a class in the school. Some students play either basketball or football or both, but there are students, who play neither basketball nor football. We have to identify later category of students as a set.

Let the set of students playing basketball be “B” and that playing football be “F”. Then, students who do not play basketball is complement set B’ and students who do not play football is complement set F’. We have shown these complement sets separately for visualization. Actually, these complement sets are drawn to the same universal set, "U".

Two complement sets are but overlapping sets. There are students in the set B’ who play football and there are students in the set F’, who play basketball. In order to remove those students playing other game, we intersect two complements. The members of the intersection of two complements, therefore, represent students who play neither basketball nor football. This intersection is shown as third bottom Venn’s diagram in the figure.

Intersection

Intersection of two component sets

Looking at the intersection of two complement sets, however, we observe that this is equal to the complement of union “ B F ”. This conclusion can be derived from basic interpretation as well. We know that union “ B F ” represents students, who play either or both games. The component of the union, therefore, represents, who neither play basketball nor football.

This fact, as a matter of fact, is the first De-morgan’s law. Symbolically,

B F = B F

The second De-morgan’s law is :

B F = B F

In the parlance of illustration given earlier, let us interpret right hand side of the second De-morgan's law. The intersection “ B F ” represents students playing both games. Its complement, therefore, represents students who do not play both games, but may play one of them.

Component set

Component of intersection of two sets

Analytical proof

Here, we shall prove first De-morgan’s law in this section. The second law can be proved in similar fashion. Let us consider an arbitrary element “x” belonging to set ( A B )’.

x A B

x A B

Then, by definition of union,

x { x : x A o r x B }

Here, “not or” is interpreted same as “and”,

x A a n d x B

x A a n d x B

x A B

But, we had started with ( A B )’ and used its definition to show that “x” belongs to another set. It means that the other set consists of the elements of the first set – at the least. Thus,

A B A B

Similarly, we can start with A B and reach the conclusion that :

A B A B

If sets are subsets of each other, then they are equal. Hence,

A B = A B

Example

Problem 1: In the reference of students in a class, the set “B” represents students, who play basketball. The set “F” represents students, who play football. The set “B” and “F” are left and right circles respectively on the Venn's diagram shown below. Identify regions marked 1 to 8 on the Venn’s diagram. Also interpret regions identified by combination U – (6+7).

Sets

Interpreting sets

Solution : The meaning of regions market 1 – 8 are as given hereunder :

1 : B-F : It represents the difference of “B” and “F”. It consists of students, who play basketball, but not football.

2 : F-B : It represents the difference of “F” and “B”. It consists of students, who play football, but not basketball.

3 : B F : It represents the intersection of two sets. It consists of students, who play both basketball and football.

4 : B: It represents the set “B”. It is union of two disjoint sets “B-F” and “ B F ”. It consists of students, who play basketball.

5 : F: It represents the set “F”. It is union of two disjoint sets “F-B” and “ B F ”. It consists of students, who play football.

6 : B∪F: It represents the union set of set “B” and “F”. Equivalently, it is union of three disjoint sets “B-F”, “ B F ” and “F-B”. It consists of students, who play either of two games or both.

7 : ( B F )’: It represents the component of union set “ B F ”. It consists of students, who play neither basketball nor football.

8 : B - F F - B : It represents union of two disjoint difference sets “B-F” and “F-B”. It consists of students, who play only one game.

The region, identified by U – (6+7), is complement of “ B F ”. It represents students, who do not play both games, but may play one of them.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Functions. OpenStax CNX. Sep 23, 2008 Download for free at http://cnx.org/content/col10464/1.64
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Functions' conversation and receive update notifications?

Ask