<< Chapter < Page Chapter >> Page >

Before the fire, the vegetation was dominated by tall trees with access to the major plant energy resource: sunlight. Their height gave them access to sunlight while also shading the ground and other low-lying species. After the fire, though, these trees are no longer dominant. Thus, the first plants to grow back are usually annual plants followed within a few years by quickly growing and spreading grasses and other pioneer species. Due to, at least in part, changes in the environment brought on by the growth of the grasses and other species, over many years, shrubs will emerge along with small pine, oak, and hickory trees. These organisms are called intermediate species. Eventually, over 150 years, the forest will reach its equilibrium point where species composition is no longer changing and resembles the community before the fire. This equilibrium state is referred to as the climax community    , which will remain stable until the next disturbance.

The three illustrations show secondary succession of an oak and hickory forest. The first illustration shows a plot of land covered with pioneer species, including grasses and perennials. The second illustration shows the same plot of land later covered with intermediate species, including shrubs, pines, oak, and hickory. The third illustration shows the plot of land covered with a climax community of mature oak and hickory. This community remains stable until the next disturbance.
Secondary succession is shown in an oak and hickory forest after a forest fire.

Secondary succession usually follows a disturbance of an existing community that removes or damages the vegetation, but does not remove, destroy, or cover the soil. Pioneer species in this type of successional event are likely to be plant species that have roots or seeds that survived the disturbance. This means that, typically speaking, unlike primary succession events, communities that come out of a secondary succession are most likely going to be the community that was in place before the disturbance.

The time progression of each type of successional event is really variable depending upon the circumstances surrounding the disturbance, but for the most part, primary succession takes much, much longer than secondary succession. This is because there is a lot that needs to happen after a primary event to make the habitat suitable for habitation by a wide variety of species. In most cases, even soil needs to be replenished before any more than lichen can grow there. The process of soil development happens by two processes. Firstly, the pioneer species that grow, reproduce and die quickly are a major contributor to soil production, both in terms of breaking down rock ans sediment, but also through decomposition after death. Secondly, the carcasses of organisms, such as insects and spiders, get blown in by the wind, but quickly die from lack of food will also contribute to soil buildup. For secondary events, the time frame is really no more than it takes for the organism that lived there before to move back in and reestablish themselves.

Intermediate disturbance hypothesis

Succession events can really be measured in terms of how stable a community is. And stability, in turn, is a measurement of biodiversity and species richness. The intermediate disturbance hypothesis is the idea that there are three aspects that influence the stability of a community in relation to disturbances that alter the landscape. How intense the disturbance, how often they occur and the amount of time that has passed since the last. For all three aspects, a community is considered to be most stable when all of these aspects are not at either extreme. In other words, Species richness greatest between disturbances of moderate intensity and frequency. An example of a community that benefits from secondary disturbances would be a redwood forest in northern California. Certain species of redwood trees, such as the giant sequoia, actually require the intense heat of a forest fire to activate seeds and trigger germination events.

Section summary

Communities include all the different species living in a given area. The variety of these species is called species richness. Many organisms have developed defenses against predation and herbivory, including mechanical defenses, warning coloration, and mimicry, as a result of evolution and the interaction with other members of the community. Two species cannot exist in the same habitat competing directly for the same resources. Species may form symbiotic relationships such as commensalism or mutualism. Community structure is described by its foundation and keystone species. Communities respond to environmental disturbances by succession (the predictable appearance of different types of plant species) until a stable community structure is established.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Bi 101 for lbcc ilearn campus. OpenStax CNX. Nov 28, 2013 Download for free at http://legacy.cnx.org/content/col11593/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Bi 101 for lbcc ilearn campus' conversation and receive update notifications?

Ask