<< Chapter < Page Chapter >> Page >

Although there can be significant differences in the efficiencies of the various Cooley-Tukey and Split-Radix FFTs, thenumber of multiplications and additions for all of them is on the order of N log N . That is fundamental to the class of algorithms.

The quick fourier transform, an fft based on symmetries

The development of fast algorithms usually consists of using special properties of the algorithm of interest to remove redundant or unnecessary operations of a direct implementation. The discrete Fourier transform(DFT) defined by

C ( k ) = n = 0 N - 1 x ( n ) W N n k

where

W N = e - j 2 π / N

has enormous capacity for improvement of its arithmetic efficiency. Most fast algorithms use the periodic and symmetric properties of its basisfunctions. The classical Cooley-Tukey FFT and prime factor FFT [link] exploit the periodic properties of the cosine and sine functions. Their use of the periodicities to share and, therefore, reduce arithmeticoperations depends on the factorability of the length of the data to be transformed. For highly composite lengths, the number of floating-pointoperation is of order N log ( N ) and for prime lengths it is of order N 2 .

This section will look at an approach using the symmetric properties to remove redundancies. This possibility has long been recognized [link] , [link] , [link] , [link] but has not been developed in any systematic way in the open literature. We will develop an algorithm,called the quick Fourier transform (QFT) [link] , that will reduce the number of floating point operations necessary to compute the DFT by afactor of two to four over direct methods or Goertzel's method for prime lengths. Indeed, it seems the best general algorithm available for primelength DFTs. One can always do better by using Winograd type algorithms but they must be individually designed for each length. The Chirp Z-transform can be used for longer lengths.

Input and output symmetries

We use the fact that the cosine is an even function and the sine is an odd function. The kernel of the DFT or the basis functions of the expansion isgiven by

W N n k = e - j 2 π n k / N = cos ( 2 π n k / N ) + j sin ( 2 π n k / N )

which has an even real part and odd imaginary part. If the data x ( n ) are decomposed into their real and imaginary parts and those into their even andodd parts, we have

x ( n ) = u ( n ) + j v ( n ) = [ u e ( n ) + u o ( n ) ] + j [ v e ( n ) + v o ( n ) ]

where the even part of the real part of x ( n ) is given by

u e ( n ) = ( u ( n ) + u ( - n ) ) / 2

and the odd part of the real part is

u o ( n ) = ( u ( n ) - u ( - n ) ) / 2

with corresponding definitions of v e ( n ) and v o ( n ) . Using Convolution Algorithms: Equation 32 with a simpler notation, the DFT of Convolution Algorithms: Equation 29 becomes

C ( k ) = n = 0 N - 1 ( u + j v ) ( cos - j sin ) .

The sum over an integral number of periods of an odd function is zero and the sum of an even function over half of the period is one half the sumover the whole period. This causes [link] and [link] to become

C ( k ) = n = 0 N / 2 - 1 [ u e cos + v o sin ] + j [ v e cos - v o sin ] .

for k = 0 , 1 , 2 , , N - 1 .

The evaluation of the DFT using equation [link] requires half as many real multiplication and half as many real additions as evaluating it using [link] or [link] . We have exploited the symmetries of the sine and cosine as functions of the time index n . This is independent of whether the length is composite or not. Another view of this formulation is thatwe have used the property of associatively of multiplication and addition. In other words, rather than multiply two data points by the same value ofa sine or cosine then add the results, one should add the data points first then multiply the sum by the sine or cosine which requires onerather than two multiplications.

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fast fourier transforms. OpenStax CNX. Nov 18, 2012 Download for free at http://cnx.org/content/col10550/1.22
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fast fourier transforms' conversation and receive update notifications?

Ask