<< Chapter < Page Chapter >> Page >

Digital signal processing

  • Digitalsampled, discrete-time, quantized
  • Signalwaveform, sequnce of measurements or observations
  • Processinganalyze, modify, filter, synthesize

Examples of digital signals

  • sampled speech waveform
  • "pixelized" image
  • Dow-Jones Index

Dsp applications

  • Filtering (noise reduction)
  • Pattern recognition (speech, faces, fingerprints)
  • Compression

A major difficulty

In many (perhaps most) DSP applications we don't have complete or perfect knowledge of the signals we wishto process. We are faced with many unknowns and uncertainties .

Examples

  • noisy measurements
  • unknown signal parameters
  • noisy system or environmental conditions
  • natural variability in the signals encountered

Functional magnetic resonance imaging

Challenges are measurement noise and intrinsic uncertainties in signal behavior.

How can we design signal processing algorithms in the face of such uncertainty?

Can we model the uncertainty and incorporate this model into the design process?

Statistical signal processing is the study of these questions.

Modeling uncertainty

The most widely accepted and commonly used approach to modeling uncertainty is Probability Theory (although other alternatives exist such as Fuzzy Logic).

Probability Theory models uncertainty by specifying the chance of observing certain signals.

Alternatively, one can view probability as specifying the degree to which we believe a signal reflects the true state of nature .

Examples of probabilistic models

  • errors in a measurement (due to an imprecise measuring device) modeled as realizations of a Gaussian randomvariable.
  • uncertainty in the phase of a sinusoidal signal modeled as a uniform random variable on 0 2 .
  • uncertainty in the number of photons stiking a CCD per unit time modeled as a Poisson random variable.

Statistical inference

A statistic is a function of observed data.

Suppose we observe N scalar values x 1 , , x N . The following are statistics:

  • x 1 N n 1 N x n (sample mean)
  • x 1 , , x N (the data itself)
  • x 1 x N (order statistic)
  • ( x 1 2 x 2 x 3 , x 1 x 3 )
A statistic cannot depend on unknown parameters .

Probability is used to model uncertainty.

Statistics are used to draw conclusions about probability models.

Probability models our uncertainty about signals we may observe.

Statistics reasons from the measured signal to the population of possible signals.

Statistical signal processing

  • Step 1

    Postulate a probability model (or models) that reasonably capture the uncertainties at hand
  • Step 2

    Collect data
  • Step 3

    Formulate statistics that allow us to interpret or understand our probability model(s)

In this class

The two major kinds of problems that we will study are detection and estimation . Most SSP problems fall under one of these two headings.

Detection theory

Given two (or more) probability models, which on best explains the signal?

Examples

  • Decode wireless comm signal into string of 0's and 1's
  • Pattern recognition
    • voice recognition
    • face recognition
    • handwritten character recognition
  • Anomaly detection
    • radar, sonar
    • irregular, heartbeat
    • gamma-ray burst in deep space

Estimation theory

If our probability model has free parameters, what are the best parameter settings to describe the signalwe've observed?

Examples

  • Noise reduction
  • Determine parameters of a sinusoid (phase, amplitude, frequency)
  • Adaptive filtering
    • track trajectories of space-craft
    • automatic control systems
    • channel equalization
  • Determine location of a submarine (sonar)
  • Seismology: estimate depth below ground of an oil deposit

Detection example

Suppose we observe N tosses of an unfair coin. We would like to decide which side the coin favors, heads or tails.

  • Step 1

    Assume each toss is a realization of a Bernoulli random variable. Heads p 1 Tails Must decide p 1 4 vs. p 3 4 .
  • Step 2

    Collect data x 1 , , x N x i 1 Heads x i 0 Tails
  • Step 3

    Formulate a useful statistic k n 1 N x n If k N 2 , guess p 1 4 . If k N 2 , guess p 3 4 .

Estimation example

Suppose we take N measurements of a DC voltage A with a noisy voltmeter. We would like to estimate A .

  • Step 1

    Assume a Gaussian noise model x n A w n where w n 0 1 .
  • Step 2

    Gather data x 1 , , x N
  • Step 3

    Compute the sample mean, A 1 N n 1 N x n and use this as an estimate.

In these examples ( and ), we solved detection and estimation problems using intuition and heuristics (in Step 3).

This course will focus on developing principled and mathematically rigorous approaches to detection and estimation,using the theoretical framework of probability and statistics.

Summary

  • DSPprocessing signals with computer algorithms.
  • SSPstatistical DSPprocessing in the presence of uncertainties and unknowns.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Statistical signal processing. OpenStax CNX. Jun 14, 2004 Download for free at http://cnx.org/content/col10232/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Statistical signal processing' conversation and receive update notifications?

Ask