<< Chapter < Page Chapter >> Page >
1.1 19 + 21 + 17 = ............ 1.11 ............ ÷ 5 = 8
1.2 125 + 175 = ............ 1.12 45 ÷ ............ = 5
1.3 1 004 – 9 = ............ 1.13 ............ ÷ 9 = 8
1.4 Halve 196 : ............ Write as a decimal fraction:
1.5 Double 225 : ............ 1.14 13 4 10 size 12{ { { size 8{4} } over { size 8{"10"} } } } {} : ............
1.6 7 × 4 = ............ 1.15 124 7 10 size 12{ { { size 8{7} } over { size 8{"10"} } } } {} : ............
1.7 3 × 8 = ............ 1.16 1 4 5 size 12{ { { size 8{4} } over { size 8{5} } } } {} : ............
1.8 ............ × 5 = 45 1.17 2 14 20 size 12{ { { size 8{"14"} } over { size 8{"20"} } } } {} : ............
1.9 ............ × 6 = 42 Write as a decimal fraction:
1.10 24 ÷ 4 = ............ 1.18 4,9 : ............
1.19 12,8 : ............
1.20 109,2 : ............

Hundredths

Look carefully at the following:

100 c = R1,00

1c = 1 100 size 12{ { {1} over {"100"} } } {} of a rand

1c = R 1 100 size 12{ { {1} over {"100"} } } {} R0,01

Activity 5:

To recognise, classify and represent numbers in order to describe and compare them [lo 1.3.3]

To recognise and use equivalent forms of numbers [lo 1.5.2]

1. By now you have probably discovered that when we work with rand and cents we are actually working with hundredths! Look carefully at the example above and than write the following in rand:

1.1 4 c .........................

1.2 38 c .........................

1.3 2 c .........................

1.4 303 c .........................

1.5 460 c .........................

Did you know?

1 100 size 12{ { { size 8{1} } over { size 8{"100"} } } } {} is written like this as a decimal fraction: 0,01. We read it as nought comma nought one . If we have less than 10 100 size 12{ { { size 8{"10"} } over { size 8{"100"} } } } {} we must write 0 (nought) as a place-holder after the decimal comma, in the place of the tenths.

Let us look again at our number system:

1 100 size 12{ { {1} over {"100"} } } {}

2. What fraction of the following is NOT coloured in? Write it also as a decimal fraction.

2.1

2.2

2.3

2.4

2.5

2.6

Assessment

Learning outcomes(LOs)
LO 1
Numbers, Operations and RelationshipsThe learner is able to recognise, describe and represent numbers and their relationships, and to count, estimate, calculate and check with competence and confidence in solving problems.
Assessment standards(ASs)
We know this when the learner:
1.3 recognises and represents the following numbers in order to describe and compare them:
1.3.3 decimal fractions of the form 0,5; 1,5; 2,5, and so on, in the context of measurement;
1.5 recognises and uses equivalent forms of the numbers listed above, including:
1.5.2 decimal fractions of the form 0,5, 1,5 and 2,5, and so on, in the context of measurement;
1.6 solves problems in context including contexts that may be used to build awareness of other Learning Areas, as well as human rights, social, economic and environmental issues such as:
  • measurements in Natural Sciences and Technology contexts;
1.8 estimates and calculates by selecting and using operations appropriate to solving problems that involve:
  • (additional) addition of positive decimals with 2 decimal places;
1.9 performs mental calculations involving:1.9.1 addition and subtraction;1.9.2 multiplication of whole numbers to at least 10 x 10;
1.10 uses a range of techniques to perform written and mental calculations with whole numbers including:
  • building up and breaking down numbers;
  • using a calculator;
1.11 uses a range of strategies to check solutions and judge the reasonableness of solutions;

Memorandum

ACTIVITY 1

1. 1.1: 3 10 size 12{ { { size 8{3} } over { size 8{"10"} } } } {}

1.2: 6 10 size 12{ { { size 8{6} } over { size 8{"10"} } } } {}

1.3: 9 10 size 12{ { { size 8{9} } over { size 8{"10"} } } } {}

2. 2.1: 0,03

  • :0,6

2.3: 0,9

3. 4 10 size 12{ { { size 8{4} } over { size 8{"10"} } } } {} ; 5 10 size 12{ { { size 8{5} } over { size 8{"10"} } } } {} ; 6 10 size 12{ { { size 8{6} } over { size 8{"10"} } } } {} ; 8 10 size 12{ { { size 8{8} } over { size 8{"10"} } } } {} ; 1 1 10 size 12{1 { { size 8{1} } over { size 8{"10"} } } } {} ; 1 3 10 size 12{1 { { size 8{3} } over { size 8{"10"} } } } {} ; 1 4 10 size 12{1 { { size 8{4} } over { size 8{"10"} } } } {} ; 1 5 10 size 12{1 { { size 8{5} } over { size 8{"10"} } } } {}

0,3; 0,7; 0,9; 1,2; 1,3

4. 4.1: 31,5

  • :312,4
  • :402,6
  • :650,2

5. 5.1: 0,8; 1; 1,2; 1,4; 1,6

5.2: 4,1; 3,9; 3,7; 3,5; 3,3

5.3: 2,5; 3,5; 4,5; 5,5; 6,5

5.4: 2,8; 2,4; 2; 1,6; 1,2

5.5: 9; 8,9; 8,8; 8,7; 8,6

ACTIVITY 2

1.1: 4,3; 4,9; 5,5; 6,1; 6,7; 7,3; 7,9; 8,5; 9,1; 9,7

1.2: 8,9; 8,5; 8,1; 7,7; 7,3; 6,9; 6,5; 6,1; 5,7; 5,3

ACTIVITY 3

1. 1.1: 5 10 size 12{ { { size 8{5} } over { size 8{"10"} } } } {} / 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {}

  • :17 6 10 size 12{ { { size 8{6} } over { size 8{"10"} } } } {}
  • :8 4 10 size 12{ { { size 8{4} } over { size 8{"10"} } } } {}
  • :152 7 10 size 12{ { { size 8{7} } over { size 8{"10"} } } } {}
  • :1 5 10 size 12{ { { size 8{5} } over { size 8{"10"} } } } {} / 1 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {}

2. 2.1: 0,8

  • : 0,1
  • : 0,6
  • :0,35
  • : 0,6
  • : 0,8

3. Change denominator to 10 or 100 (equivalent fractions)

4. Numerator + denominator =

ACTIVITY 4

12. 1.1: 57; 1.11: 40

  • :300; 1.12: 9
  • :995; 1.13: 72
  • : 98; 1.14: 13,4
  • :510; 1.15: 124,7
  • : 28; 1.16: 1,8
  • : 24; 1.17: 2,7
  • : 9; 1.18: 4 9 10 size 12{ { { size 8{9} } over { size 8{"10"} } } } {}
  • : 7; 1.19: 12 8 10 size 12{ { { size 8{8} } over { size 8{"10"} } } } {}
  • : 6; 1.20 : 09 2 10 size 12{ { { size 8{2} } over { size 8{"10"} } } } {}

ACTIVITY 5

1. 1.1: R0,04

  • :R0,38
  • :R0,02
  • :R3,03
  • :R4,60

2. 2.1: 86 100 size 12{ { { size 8{"86"} } over { size 8{"100"} } } } {} = 0,86

2.2 72 100 size 12{ { { size 8{"72"} } over { size 8{"100"} } } } {} = 0,72

2.3 44 100 size 12{ { { size 8{"44"} } over { size 8{"100"} } } } {} = 0,44

2.4 : 3 100 size 12{ { { size 8{3} } over { size 8{"100"} } } } {} = 0,03

2.5: 10 100 size 12{ { { size 8{"10"} } over { size 8{"100"} } } } {} = 0,10

2.6 : 70 100 size 12{ { { size 8{"70"} } over { size 8{"100"} } } } {} = 0,70

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Mathematics grade 5. OpenStax CNX. Sep 23, 2009 Download for free at http://cnx.org/content/col10994/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Mathematics grade 5' conversation and receive update notifications?

Ask