<< Chapter < Page | Chapter >> Page > |
One of the principles in the NCS is to produce learners who are able to work effectively within a group. Learners generally find this difficult to do. Learners need to be encouraged to work within small groups. Very often it is while learning under peer assistance that a better understanding of concepts and processes is reached. Clever learners usually battle with this sort of task, and yet it is important that they learn how to assist and communicate effectively with other learners.
A metacog or “mind map” is a useful tool. It helps to associate ideas and make connections that would otherwise be too unrelated to be linked. A metacog can be used at the beginning or end of a section of work in order to give learners an overall perspective of the work covered, or as a way of recalling a section already completed. It must be emphasised that it is not a summary. Whichever way you use it, it is a way in which a learner is given the opportunity of doing research in a particular field and can show that he/she has an understanding of the required section.
This is an open book form of assessment and learners may use any material they feel will assist them. It is suggested that this activity be practised, using other topics, before a test metacog is submitted for portfolio assessment purposes.
On completion of the metacog, learners must be able to answer insightful questions on the metacog. This is what sets it apart from being just a summary of a section of work. Learners must refer to their metacog when answering the questions, but may not refer to any reference material. Below are some guidelines to give to learners to adhere to when constructing a metacog as well as two examples to help you get learners started. A marking rubric is also provided. This should be made available to learners before they start constructing their metacogs. On the next page is a model question for a metacog, accompanied by some sample questions that can be asked within the context of doing a metacog about analytical geometry.
A basic metacog is drawn in the following way:
Metacogs are one’s own property. Once a person understands how to assemble the basic structure they can develop their own coding and conventions to take things further, for example to show linkages between facts. The following suggestions may assist educators and learners to enhance the effectiveness of their metacogs:
Notification Switch
Would you like to follow the 'Mathematics grade 10 teachers' guide - siyavula webbooks' conversation and receive update notifications?