<< Chapter < Page Chapter >> Page >

Băng 1 chứa input

Băng 2 sinh ra dãy chứa các số từ 1 đến r một cách tự động theo tính chất dãy ngắn sinh ra trước, nếu các dãy cùng độ dài thì nó sinh ra theo thứ tự liệt kê số (numerical order).

Băng 3 dùng chép input trên băng 1 vào để xử lý: với mỗi số sinh ra trên băng 2, M2 chép input trên băng 1 vào băng 3 và thực hiện các phép chuyển theo dãy số trên băng 2.

Nếu có một chuỗi nào đó trên băng 2 làm cho M2 đi vào trạng thái kết thúc thì M2 dừng và chấp nhận input. Nếu không có chuỗi nào như vậy thì M2 không chấp nhận input. Tất nhiên M2 chấp nhận input khi và chỉ khi M1 chấp nhận input.

Máy turing nhiều chiều

Máy Turing nhiều chiều gồm một bộ điều khiển hữu hạn, nhưng băng của nó là một mảng k chiều vô hạn về cả 2k phía. Với một số k nào đó, phụ thuộc vào trạng thái và một ký hiệu được đọc, máy thay đổi trạng thái, in một ký hiệu mới tại ô đang đọc và dịch chuyển đầu đọc theo một trong 2k phía.

ĐỊNH LÝ 7.4: Nếu L được chấp nhận bởi máy Turing k chiều M1 thì L cũng được chấp nhận bởi một máy Turing một chiều M2 nào đó.

(Phần chứng minh, xem như bài tập)

Máy turing nhiều đầu đọc

Máy Turing nhiều đầu đọc có k đầu đọc được đánh số từ 1 đến k với k là một số hữu hạn nào đó, nhưng chỉ có một băng input. Một phép chuyển của máy Turing phụ thuộc vào trạng thái và các ký tự được đọc bởi mỗi đầu băng. Mỗi đầu dịch chuyển một cách độc lập sang trái, sang phải hoặc đứng yên.

ĐỊNH LÝ 7.5 : Nếu L được chấp nhận bởi máy Turing k đầu đọc M1 thì L cũng được chấp nhận bởi một máy Turing một đầu đọc M2 nào đó.

(Phần chứng minh, xem như bài tập)

Giả thuyết church

Giả thuyết rằng khái niệm trực giác “Hàm tính được” (computable function) có thể được định nghĩa bằng lớp các hàm đệ quy bộ phận là giả thuyết Church hay còn được gọi là luận đề Church - Turing. Trong khi chúng ta không thể hy vọng để chứng minh giả thuyết Church cũng như những định nghĩa không hình thức về “sự tính được”, chúng ta có thể cho những dẫn chứng về những khả triển của chúng. Trong một thời gian dài, khái niệm trực giác về “sự tính được” đặt không giới hạn trên số bước hoặc tổng số các lưu trữ, có vẻ như các hàm đệ quy bộ phận thì có thể tính được một cách trực giác mặc dù cũng có một số hàm không thể tính được trừ khi ta đặt giới hạn cho việc tính toán sau đó hoặc ít nhất thiết lập được liệu có hay không có phép tính cuối cùng.

Điều còn không rõ là liệu lớp các hàm đệ quy bộ phận có thể bao hàm tất cả mọi “hàm tính được”. Những nhà logic học đã đưa ra nhiều công thức khác, chẳng hạn như phép tính-, hệ thống Post và các hàm đệ quy tổng quát. Tất cả chúng được định nghĩa cùng một lớp hàm, cụ thể là hàm đệ quy bộ phận. Hơn nữa, các mô hình máy tính trừu tượng, chẳng hạn như mô hình RAM (Random Access Machine) cũng được xem xét như một hàm đệ quy bộ phận.

Mô hình RAM bao gồm một số vô hạn các từ nhớ, đánh số 0, 1, ..., mỗi một từ nhớ có thể lưu giữ một số nguyên bất kỳ và một số hữu hạn các thanh ghi số học cũng có khả năng giữ các số nguyên bất kỳ. Các số nguyên có thể được giải mã thành các dạng thông thường của các chỉ thị máy tính. Chúng ta sẽ không định nghĩa mô hình RAM một cách hình thức hơn, nhưng sẽ rõ ràng hơn nếu chúng ta chọn một tập các chỉ thị phù hợp, RAM sẽ mô phỏng mọi máy tính hiện có. Chứng minh rằng mô hình máy Turing cũng có khả năng tương đương như mô hình RAM được chỉ ra dưới đây hay có thể nói một máy Turing cũng có tác dụng như một kiểu RAM.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Giáo trình tin học lý thuyết. OpenStax CNX. Jul 30, 2009 Download for free at http://cnx.org/content/col10826/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Giáo trình tin học lý thuyết' conversation and receive update notifications?

Ask