<< Chapter < Page Chapter >> Page >

Và: GH=G1G4(G3H2+G2H2-H1) (3.25)

Vậy: H = GH G = ( G 2 + G 3 ) H 2 H 1 G 2 + G 3 size 12{H= { { ital "GH"} over {G} } = { { \( G rSub { size 8{2} } +G rSub { size 8{3} } \) H rSub { size 8{2} } - H rSub { size 8{1} } } over {G rSub { size 8{2} } +G rSub { size 8{3} } } } } {} (3.26)

Sơ đồ dạng chính tắc được vẽ ở hình H.3_17.

(G2+ G3)H2-H1G2+ G3G1G 4(G2+ G3)CR+-

Hình H.3_17.

Dấu trừ ở điểm tổng, là kết quả việc dùng dấu cộng trong công thức tính GH ở trên.

Thí dụ: Xác định tỷ số điều khiển (hoặc hàm chuyển vòng kín) C/R của một hệ có sơ đồ khối như hình H.3_18.

G3G4G2G1H1H2C++-++_-_REy3y2y1+_-_

Hình H.3_18:

Đồ hình truyền tín hiệu của hệ được vẽ ở hình H.3_19:

R 1 E 1 y3 G1 y2 G2 y1 G3 C 1 Cy1 y2 y3 y4 -H2 y2 y3 y4 y3 y2 y3 y4 y4 y2 y3 y4 -H1 a24 y2 y3 y4 G4 y2 y3 y4-1 y2 y3 y4 y3 y4

Hình H.3_19.

Có hai đường trực tiếp:

P1= G1G2G3 ; P2= G1G4.

Có 5 vòng hồi tiếp :

P11= - G1G2H1 ; P21= - G2G3H2 ; P31= - G4H2 ; P41= - G1G2G3 ; P51= - G1G4.

Vậy:

= 1- ( P11+ P21+ P31+ P41+ P51)

Và 1 = 2 = 1.

=> C R = P 1 Δ 1 + P 2 Δ 2 Δ = G 1 G 2 G 3 + G 1 G 4 1 + G 1 G 2 G 3 + G 1 G 2 H 1 + G 2 G 3 H 2 + G 4 H 2 + G 1 G 4 size 12{ { {C} over {R} } = { {P rSub { size 8{1} } Δ rSub { size 8{1} } +P rSub { size 8{2} } Δ rSub { size 8{2} } } over {Δ} } = { {G rSub { size 8{1} } G rSub { size 8{2} } G rSub { size 8{3} } +G rSub { size 8{1} } G rSub { size 8{4} } } over {1+G rSub { size 8{1} } G rSub { size 8{2} } G rSub { size 8{3} } +G rSub { size 8{1} } G rSub { size 8{2} } H rSub { size 8{1} } +G rSub { size 8{2} } G rSub { size 8{3} } H rSub { size 8{2} } +G rSub { size 8{4} } H rSub { size 8{2} } +G rSub { size 8{1} } G rSub { size 8{4} } } } } {}

Bài tập chương iii

3.1 : Hãy xác định tỷ số C/R và dạng sơ đồ khối chính tắc của một hệ điều khiển sau đây:

G1G4G3G2H1H2R+-+-

+C

RG4G1H2G2G3H1C+++-++-++3.2 : Xác định hàm chuyển cho sơ đồ khối sau đây, bằng kỹ thuật dùng ĐHTTH:

3.3 : Xem TD2.4, giải bài toán bằng ĐHTTH.

G1G2H1H2u1++++++Cu2R

3.4 : Tìm hàm chuyển C/R của hệ thống sau đây, với k là hằng số.

1/(s+a)1/sKS20.1+-R++C

3.6 : Dùng kỹ thuật ĐHTTH để giải bài tập 2.13.

3.7 : Tìm C/R cho hệ điều khiển sau đây:

G4G2G3H2G1H1++++-++++CR

3.8 : Vẽ ĐHTTH cho mạch điện sau:

i1i1

3.9 : Vẽ ĐHTTH cho mạch điện sau:

234

3.10 : Vẽ ĐHTTH cho mạch điện sau, tính độ lợi:

viR1C1+--iiR2v3C2i2+-

Gợi ý: 5 biến v1, i1, v2, i2, v3. Với v1 là input. Cần 4 phương trình độc lập.

Giải bài tập chương iii

R 1 G1G4 1 C G3 1 G1G4G2 1 G1G4-H2 1 G1G4H1 1 G1G43.1 : Đồ hình truyền tín hiệu:

Dùng công thức Mason để xác định C/R.

Có hai đường trực tiếp:

P1= G1G2G4 ; P2=G1G3G4

Có 3 vòng:

P11=G1G4H1; P21= - G1G2G4H2 ; P31= - G1G3 G4H2

Không có vòng không chạm. Và tất cả các vòng đều chạm cả hai đường trực tiếp. Vậy:

1= 1 ; 2= 1

Do đó, tỷ số C/R:

T = C R = P 1 Δ 1 + P 2 Δ 2 Δ size 12{T= { {C} over {R} } = { {P rSub { size 8{1} } Δ rSub { size 8{1} } +P rSub { size 8{2} } Δ rSub { size 8{2} } } over {Δ} } } {}

Với = 1 - (P11+P21+P31).

Suy ra:

C R = G 1 G 4 ( G 2 + G 3 ) 1-G 1 G 4 H 1 + G 1 G 2 G 4 H 2 + G 1 G 3 G 4 H 2 size 12{ { {C} over {R} } = { {G rSub { size 8{1} } G rSub { size 8{4} } \( G rSub { size 8{2} } +" G" rSub { size 8{3} } \) } over {"1-G" rSub { size 8{1} } G rSub { size 8{4} } H rSub { size 8{1} } +G rSub { size 8{1} } G rSub { size 8{2} } G rSub { size 8{4} } H rSub { size 8{2} } +G rSub { size 8{1} } G rSub { size 8{3} } G rSub { size 8{4} } H rSub { size 8{2} } } } } {}

C R = G 1 G 2 G 4 + G 1 G 3 G 4 1-G 1 G 4 H 1 + G 1 G 2 G 4 H 2 + G 1 G 3 G 4 H 2 size 12{ { {C} over {R} } = { {G rSub { size 8{1} } G rSub { size 8{2} } G rSub { size 8{4} } +" G" rSub { size 8{1} } G rSub { size 8{3} } G rSub { size 8{4} } } over {"1-G" rSub { size 8{1} } G rSub { size 8{4} } H rSub { size 8{1} } +G rSub { size 8{1} } G rSub { size 8{2} } G rSub { size 8{4} } H rSub { size 8{2} } +G rSub { size 8{1} } G rSub { size 8{3} } G rSub { size 8{4} } H rSub { size 8{2} } } } } {}

Từ ( 3.25 ) và (3.26) , ta có:

G = G1G4(G2 + G3)

Và :

GH = G1G4(G3H2 +G2H2 - H1)

H = GH G = ( G 2 + G 3 ) H 2 H 1 G 2 + G 3 size 12{H= { { ital "GH"} over {G} } = { { \( G rSub { size 8{2} } +G rSub { size 8{3} } \) H rSub { size 8{2} } - H rSub { size 8{1} } } over {G rSub { size 8{2} } +G rSub { size 8{3} } } } } {}

Dạng chính tắc của sơ đồ khối của hệ thống :

G1G4(G2+G3)(G2+G3)H2-H1(G2+G3)CR +--

Dấu trừ tại điểm tổng là do việc dùng dấu cộng trong công thức tính GH ở trên.

Sơ đồ khối ở trên có thể đưa về dạng cuối cùng như trong VD2.1 bằng cách dùng các định lý biến đổi khối.

3.2 :

Đồ hình truyền tín hiệu vẽ trực tiếp từ sơ đồ khối:

Có hai đường trực tiếp, độ lợi là :

P1 = G1G2G3 ; P2 = G4

Có 3 vòng hồi tiếp,độ lợi vòng là:

P11 = - G2H1 ; P21 = G1G2H1 ; P31 = - G2G3H2

Không có vòng nào không chạm, vậy:

 = 1 - (P­11 + P21 + P31) + 0 Và

1 = 1 Vì cả 3 vòng đều chạm với đường 1.

Vì không có vòng nào chạm với các nút đường trực tiếp thứ nhì, nên:

2=  ( Cả 3 vòng đều không chạm với đường trực tiếp thứ 2).

Vậy:

(

3.3 : ĐHTTH vẽ trực tiếp từ sơ đồ khối.

u11RG11G2CH2H1u21

Với u1 = u2 = 0. Ta có:

R 1 G1G2 1 CRH1H2

P1 = G1G2 ; P11 = G1G2H1H2

 = 1- P11 ; 1 = 1

Vậy:

C R = P 1 Δ 1 R Δ = G 1 G 2 R 1 G 1 G 2 H 1 H 2 size 12{C rSub { size 8{R} } = { {P rSub { size 8{1} } Δ rSub { size 8{1} } R} over {Δ} } = { {G rSub { size 8{1} } G rSub { size 8{2} } R} over {1 - G rSub { size 8{1} } G rSub { size 8{2} } H rSub { size 8{1} } H rSub { size 8{2} } } } } {}

Với u2 = R =0, Ta có:

u1 1 G2 1 CG1H1H2

P1 = G2 ;

P11 = G1G2H1H2

 = 1 - G1G2H1H2 ;

1 = 1

C 2 = Tu 2 = G 2 u 1 1 G 1 G 2 H 1 H 2 size 12{C rSub { size 8{2} } = ital "Tu" rSub { size 8{2} } = { {G rSub { size 8{2} } u rSub { size 8{1} } } over {1 - G rSub { size 8{1} } G rSub { size 8{2} } H rSub { size 8{1} } H rSub { size 8{2} } } } } {}

Với R = u1 = 0

u2 1 H1G1G2 1 CH2

P1 = G1G2H1 ; P11 = G1G2H1H2

 = 1 - P11 ; 1 = 1

C 2 = Tu 2 = P 1 Δ 1 u 2 Δ = G 1 G 2 H 1 u 2 1 G 1 G 2 H 1 H 2 size 12{C rSub { size 8{2} } = ital "Tu" rSub { size 8{2} } = { {P rSub { size 8{1} } Δ rSub { size 8{1} } u rSub { size 8{2} } } over {Δ} } = { {G rSub { size 8{1} } G rSub { size 8{2} } H rSub { size 8{1} } u rSub { size 8{2} } } over {1 - G rSub { size 8{1} } G rSub { size 8{2} } H rSub { size 8{1} } H rSub { size 8{2} } } } } {}

Cuối cùng, ta có:

C = G 1 G 2 R + G 2 u 1 + G 1 G 2 H 1 u 2 1 G 1 G 2 H 1 H 2 size 12{C= { {G rSub { size 8{1} } G rSub { size 8{2} } R+G rSub { size 8{2} } u rSub { size 8{1} } +G rSub { size 8{1} } G rSub { size 8{2} } H rSub { size 8{1} } u rSub { size 8{2} } } over {1 - G rSub { size 8{1} } G rSub { size 8{2} } H rSub { size 8{1} } H rSub { size 8{2} } } } } {}

3.4 :

a) C R = G 1 + G 2 1 G 1 H 1 G 2 H 2 size 12{ { {C} over {R} } = { {G rSub { size 8{1} } +G rSub { size 8{2} } } over {1 - G rSub { size 8{1} } H rSub { size 8{1} } - G rSub { size 8{2} } H rSub { size 8{2} } } } } {}

b ) C R = G 1 + G 2 1 G 1 H 1 size 12{ { {C} over {R} } = { {G rSub { size 8{1} } +G rSub { size 8{2} } } over {1 - G rSub { size 8{1} } H rSub { size 8{1} } } } } {}

c) C R = G 1 + G 2 ( 1 G 1 H 1 1 G 1 H 1 size 12{ { {C} over {R} } = { {G rSub { size 8{1} } +G rSub { size 8{2} } \( 1 - G rSub { size 8{1} } H rSub { size 8{1} } } over {1 - G rSub { size 8{1} } H rSub { size 8{1} } } } } {}

3.5 :

ĐHTTH vẽ trực tiếp từ sơ đồ khối:

R 1/(s+a) 1/s K C -0.1-s2

-

P 1 = 1 s + a 1 s k = k s ( s + a ) size 12{P rSub { size 8{1} } = left ( { {1} over {s+a} } right ) left ( { {1} over {s} } right )k= { {k} over {s \( s+a \) } } } {}

P 11 = 1 s s 2 = s ; P 21 = 0 . 1k s size 12{P rSub { size 8{"11"} } = left ( { {1} over {s} } right ) left ( - s rSup { size 8{2} } right )= - s;P rSub { size 8{"21"} } = - { {0 "." 1k} over {s} } } {}

Δ = 1 ( P 11 + P 21 ) ; Δ 1 = 1 size 12{Δ=1 - \( P rSub { size 8{"11"} } +P rSub { size 8{"21"} } \) ;Δ rSub { size 8{1} } =1} {}

C R = P 1 Δ 1 Δ = k ( s + a ) ( s 2 + s + 0 . 1k ) size 12{ { {C} over {R} } = { {P rSub { size 8{1} } Δ rSub { size 8{1} } } over {Δ} } = { {k} over { \( s+a \) \( s rSup { size 8{2} } +s+0 "." 1k \) } } } {}

3.6 :

k1/(s+1)RE11CV-s-0.1

k1/(1+s)11RC-(s+0.1)

P 1 = k s + 1 ; P 11 = k ( s + 0 . 1 ) s + 1 size 12{P rSub { size 8{1} } = { {k} over {s+1} } ;P rSub { size 8{"11"} } = - { {k \( s+0 "." 1 \) } over {s+1} } } {}

Δ = 1 + k ( s + 0 . 1 ) s + 1 ; Δ 1 = 1 size 12{Δ=1+ { {k \( s+0 "." 1 \) } over {s+1} } ;Δ rSub { size 8{1} } =1} {}

c = TR = P 1 Δ 1 R Δ = kR ( 1 + k ) s + 1 + 0 . 1k size 12{c= ital "TR"= { {P rSub { size 8{1} } Δ rSub { size 8{1} } R} over {Δ} } = { { ital "kR"} over { \( 1+k \) s+1+0 "." 1k} } } {}

3.7 :

ĐHTTH vẽ từ sơ đồ khối:

H1G4H2-111G1G2G31CR

Cọ 2 âỉåìng trỉûc tiãúp:

P1= G1G2G3 ; P2 = G1G4

Cọ 5 voìng häưi tiãúp:

P11 = G1G2H1 ; P21 = G2G3H2 ; P31 = - G1G2G3

P41 = G4H2 ; P51 = - G1G4

 = 1 - (P11 + P21 + P31 + P41 + P51) ; 1 = 2 = 1

Cuối cùng:

C R = P 1 Δ 1 + P 2 Δ 2 Δ = G 1 G 2 G 3 + G 1 G 4 1 + G 1 G 2 G 3 G 1 G 2 H 1 G 2 G 3 H 2 G 4 H 2 + G 1 G 4 size 12{ { {C} over {R} } = { {P rSub { size 8{1} } Δ rSub { size 8{1} } +P rSub { size 8{2} } Δ rSub { size 8{2} } } over {Δ} } = { {G rSub { size 8{1} } G rSub { size 8{2} } G rSub { size 8{3} } +G rSub { size 8{1} } G rSub { size 8{4} } } over {1+G rSub { size 8{1} } G rSub { size 8{2} } G rSub { size 8{3} } - G rSub { size 8{1} } G rSub { size 8{2} } H rSub { size 8{1} } - G rSub { size 8{2} } G rSub { size 8{3} } H rSub { size 8{2} } - G rSub { size 8{4} } H rSub { size 8{2} } +G rSub { size 8{1} } G rSub { size 8{4} } } } } {}

3.10 : 5 biến v1, i1, v2, i2, v3. Với v1 là input, cần 4 phương trình độc lập.

i 1 = 1 R 1 v 1 v 2 R 1 ; v 2 = 1 C 1 0 t i 1 dt 1 C 1 0 t i 2 dt size 12{i rSub { size 8{1} } = { {1} over {R rSub { size 8{1} } } } v rSub { size 8{1} } - { {v rSub { size 8{2} } } over {R rSub { size 8{1} } } } ;v rSub { size 8{2} } = { {1} over {C rSub { size 8{1} } } } Int rSub { size 8{0} } rSup { size 8{t} } {i rSub { size 8{1} } } ital "dt" - { {1} over {C rSub { size 8{1} } } } Int rSub { size 8{0} } rSup { size 8{t} } {i rSub { size 8{2} } } ital "dt"} {}

i 2 = 1 R 2 v 2 v 3 R 2 ; v 3 = 1 C 2 0 t i 2 dt size 12{i rSub { size 8{2} } = { {1} over {R rSub { size 8{2} } } } v rSub { size 8{2} } - { {v rSub { size 8{3} } } over {R rSub { size 8{2} } } } ;v rSub { size 8{3} } = { {1} over {C rSub { size 8{2} } } } Int rSub { size 8{0} } rSup { size 8{t} } {i rSub { size 8{2} } } ital "dt"} {}

-1/R1

-1/R21/R1
1/R2
i1v2i2v3v1

Biến đổi Laplace:

-1/R2-1/C1S-1/R21/R11/SC1-1/R2-1/SC2I1V2I2I3V1

Độ lợi: v 3 v 1 size 12{ { {v rSub { size 8{3} } } over {v rSub { size 8{1} } } } } {} Tính theo công thức Mason.

***********

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Cơ sở tự động học. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10756/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Cơ sở tự động học' conversation and receive update notifications?

Ask