<< Chapter < Page Chapter >> Page >

In addition to the negative performance impact due to cache misses, the virtual memory system can also slow your program down if it is too large to fit in the memory of the system or is competing with other large jobs for scarce memory resources.

Under most UNIX implementations, the operating system automatically pages pieces of a program that are too large for the available memory out to the swap area. The program won’t be tossed out completely; that only happens when memory gets extremely tight, or when your program has been inactive for a while. Rather, individual pages are placed in the swap area for later retrieval. First of all, you need to be aware that this is happening if you don’t already know about it. Second, if it is happening, the memory access patterns are critical. When references are too widely scattered, your runtime will be completely dominated by disk I/O.

If you plan in advance, you can make a virtual memory system work for you when your program is too large for the physical memory on the machine. The techniques are exactly the same as those for tuning a software-managed out-of-core solution, or loop nests. The process of “blocking” memory references so that data consumed in neighborhoods uses a bigger portion of each virtual memory page before rotating it out to disk to make room for another. We examine the techniques for blocking in [link] Chapter 8.

Gauging the size of your program and the machine’s memory

How can you tell if you are running out-of-core? There are ways to check for pag- ing on the machine, but perhaps the most straightforward check is to compare the size of your program against the amount of available memory. You do this with the size command:


% size myprogram

On a System V UNIX machine, the output looks something like this:


53872 + 53460 + 10010772 = 10118104

On a Berkeley UNIX derivative you see something like this:


text data bss hex decimal 53872 53460 10010772 9a63d8 10118104

The first three fields describe the amount of memory required for three different portions of your program. The first, text, accounts for the machine instructions that make up your program. The second, data, includes initialized values in your pro- gram such as the contents of data statements, common blocks, externals, character strings, etc. The third component, bss, (block started by symbol), is usually the largest. It describes an uninitialized data area in your program. This area would be made of common blocks that are not set by a block data. The last field is a total for all three sections added together, in bytes. Warning: The size command won’t give you the full picture if your program allocates memory dynamically, or keeps data on the stack. This area is especially important for C programs and FORTRAN programs that create large arrays that are not in COMMON.

Next, you need to know how much memory you have in your system. Unfortunately, there isn’t a standard UNIX command for this. On the RS/6000, /etc/lscfg tells you. On an SGI machine, /etc/hinv does it. Many System V UNIX implementations have an /etc/memsize command. On any Berkeley derivative, you can type:

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, High performance computing. OpenStax CNX. Aug 25, 2010 Download for free at http://cnx.org/content/col11136/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'High performance computing' conversation and receive update notifications?

Ask