<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Compare the composition of atmospheric air and alveolar air
  • Describe the mechanisms that drive gas exchange
  • Discuss the importance of sufficient ventilation and perfusion, and how the body adapts when they are insufficient
  • Discuss the process of external respiration
  • Describe the process of internal respiration

The purpose of the respiratory system is to perform gas exchange. Pulmonary ventilation provides air to the alveoli for this gas exchange process. At the respiratory membrane, where the alveolar and capillary walls meet, gases move across the membranes, with oxygen entering the bloodstream and carbon dioxide exiting. It is through this mechanism that blood is oxygenated and carbon dioxide, the waste product of cellular respiration, is removed from the body.

Gas exchange

In order to understand the mechanisms of gas exchange in the lung, it is important to understand the underlying principles of gases and their behavior. In addition to Boyle’s law, several other gas laws help to describe the behavior of gases.

Gas laws and air composition

Gas molecules exert force on the surfaces with which they are in contact; this force is called pressure. In natural systems, gases are normally present as a mixture of different types of molecules. For example, the atmosphere consists of oxygen, nitrogen, carbon dioxide, and other gaseous molecules, and this gaseous mixture exerts a certain pressure referred to as atmospheric pressure ( [link] ). Partial pressure ( P x ) is the pressure of a single type of gas in a mixture of gases. For example, in the atmosphere, oxygen exerts a partial pressure, and nitrogen exerts another partial pressure, independent of the partial pressure of oxygen ( [link] ). Total pressure is the sum of all the partial pressures of a gaseous mixture. Dalton’s law    describes the behavior of nonreactive gases in a gaseous mixture and states that a specific gas type in a mixture exerts its own pressure; thus, the total pressure exerted by a mixture of gases is the sum of the partial pressures of the gases in the mixture.

Partial Pressures of Atmospheric Gases
Gas Percent of total composition Partial pressure
(mm Hg)
Nitrogen (N 2 ) 78.6 597.4
Oxygen (O 2 ) 20.9 158.8
Water (H 2 O) 0.04 3.0
Carbon dioxide (CO 2 ) 0.004 0.3
Others 0.0006 0.5
Total composition/total atmospheric pressure 100% 760.0

Partial and total pressures of a gas

The left panel of this figure shows a canister of oxygen. The middle panel shows a canister of nitrogen. The right panel shows a canister containing a mixture of oxygen and nitrogen. A pressure gauge on each container shows the pressure exerted by the gas in that container.
Partial pressure is the force exerted by a gas. The sum of the partial pressures of all the gases in a mixture equals the total pressure.

Partial pressure is extremely important in predicting the movement of gases. Recall that gases tend to equalize their pressure in two regions that are connected. A gas will move from an area where its partial pressure is higher to an area where its partial pressure is lower. In addition, the greater the partial pressure difference between the two areas, the more rapid is the movement of gases.

Solubility of gases in liquids

Henry’s law    describes the behavior of gases when they come into contact with a liquid, such as blood. Henry’s law states that the concentration of gas in a liquid is directly proportional to the solubility and partial pressure of that gas. The greater the partial pressure of the gas, the greater the number of gas molecules that will dissolve in the liquid. The concentration of the gas in a liquid is also dependent on the solubility of the gas in the liquid. For example, although nitrogen is present in the atmosphere, very little nitrogen dissolves into the blood, because the solubility of nitrogen in blood is very low. The exception to this occurs in scuba divers; the composition of the compressed air that divers breathe causes nitrogen to have a higher partial pressure than normal, causing it to dissolve in the blood in greater amounts than normal. Too much nitrogen in the bloodstream results in a serious condition that can be fatal if not corrected. Gas molecules establish an equilibrium between those molecules dissolved in liquid and those in air.

Questions & Answers

what are the types of homeostasis
Odey Reply
diagram of the digestive system
Zainab Reply
drown and level female reproductive system
Anas
anatomy
Anas
What is the best way to indicate the sperm
ADAM Reply
Definition of pathology
Promise Reply
what are the body organs and their functions
Comforter Reply
what are the body organs and their functions
Ruth
musculoskeletal
Ruth
what is cell
Oppicial Reply
a cell is the smallest structural and functional unit of life.
Patrick
To know how bones are functions
DAUDA Reply
diagram of the heart
Victoria Reply
what are the layers of the muscles
Tongdock Reply
What is Amebae
Najibu Reply
the collection of fluids in the throat is cause by what
Emmanuel Reply
what is difference between meiosis and mitosis
Aishetu Reply
what is difference between mitosis and meiosis
Aishetu
What is Anatomy
Najibu Reply
What the difference between the Anatomy and physiology
Najibu
What is the meaning of chromoprotein
Aisha Reply
what is cartilage
Abdulkadir Reply
tough , white fibrous tissue
Henry
drowning and level female reproductive system
Anas Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask