<< Chapter < Page Chapter >> Page >

Funksies in die vorm y = a x + q

Funksies met die algemene vorm y = a x + q word reguitlyn funksies genoem. In die vergelyking, y = a x + q , is a en q konstantes en het verskillende invloede op die grafiek van die funksie. Die algemene grafiek van so 'n funksie word gegee in [link] vir die funksie f ( x ) = 2 x + 3 .

Grafiek van f ( x ) = 2 x + 3

Ondersoek: funksies van die vorm y = a x + q

  1. Op dieselfde assestelsel, trek die volgende grafieke:
    1. a ( x ) = x - 2
    2. b ( x ) = x - 1
    3. c ( x ) = x
    4. d ( x ) = x + 1
    5. e ( x ) = x + 2
    Gebruik jou resultate om die invloed van verskillende waardes van q op die resulterende grafiek af te lei.
  2. Op dieselfde assestelsel, teken die volgende grafieke:
    1. f ( x ) = - 2 . x
    2. g ( x ) = - 1 . x
    3. h ( x ) = 0 . x
    4. j ( x ) = 1 . x
    5. k ( x ) = 2 . x
    Gebruik jou resultate om die invloed van verskillende waardes van a op die resulterende grafiek af te lei.

Jy behoort te vind dat die waarde van a die helling van die grafiek beïnvloed. Soos a vermeerder, vermeerder die helling van die grafiek ook. Indien a > 0 sal die grafiek vermeerder van links na regs (opwaartse helling). Indien a < 0 sal die grafiek verminder van links na regs (afwaartse helling). Dit is hoekom daar na a verwys word as die helling of die gradiënt van 'n reguitlynfunksie.

Jy behoort ook te vind dat die waarde van q die punt bepaal waar die grafiek die y -as sny. Om hierdie rede, staan q bekend as die y-afsnit .

Die verskillende eienskappe word opgesom in [link] .

Opsomming van algemene vorms en posisies van grafieke van funksies in die vorm y = a x + q
a > 0 a < 0
q > 0
q < 0

Definisieversameling en waardeversameling

Vir f ( x ) = a x + q , is die definisieversameling { x : x R } , omdat daar geen waarde is van x R waarvoor f ( x ) ongedefinieërd is nie.

Die waardeversameling van f ( x ) = a x + q is ook { f ( x ) : f ( x ) R } omdat daar geen waarde van f ( x ) R waarvoor f ( x ) ongedefinieërd is nie.

Byvoorbeeld, die definisieversameling van g ( x ) = x - 1 is { x : x R } omdat daar geen waardes is van x R waarvoor g ( x ) ongedefinieërd is nie. Die waardeversameling van g ( x ) is { g ( x ) : g ( x ) R } .

Afsnitte

Vir funksies van die vorm, y = a x + q word die metode om die afsnitte met die x - en y -asse te bereken, uiteengesit.

Die y -afsnitte word as volg bereken:

y = a x + q y i n t = a ( 0 ) + q = q

Byvoorbeeld, die y -afsnit van g ( x ) = x - 1 word bepaal deur x = 0 te stel en dan op te los:

g ( x ) = x - 1 y i n t = 0 - 1 = - 1

Die x -afsnit word as volg bereken:

y = a x + q 0 = a · x i n t + q a · x i n t = - q x i n t = - q a

Byvoorbeeld, die x -afsnit van g ( x ) = x - 1 word gegee deur y = 0 in te stel en dan op te los:

g ( x ) = x - 1 0 = x i n t - 1 x i n t = 1

Draaipunte

Die grafiek van 'n reguitlynfunksie het nie draaipunte nie.

Simmetrie-asse

Die grafieke van reguitlynfunksies het gewoonlik nie simmerie-asse nie.

Skets van grafieke van die vorm f ( x ) = a x + q

Om die grafieke van die vorm f ( x ) = a x + q te skets, moet ons die volgende drie eienskappe vind:

  1. die teken van a
  2. y -afsnit
  3. x -afsnit

Slegs twee punte word benodig om 'n reguitlyn te trek. Die maklikste punte is die x -afsnit (waar die lyn die x -as sny) en die y -afsnit.

Byvoorbeeld, skets die grafiek van g ( x ) = x - 1 . Merk duidelik die afsnitte.

Eerstens bereken ons dat a > 0 . Dit beteken die grafiek gaan 'n opwaartse helling hê.

Die y -afsnit word bepaal deur x = 0 te stel en is vroeër bereken as y i n t = - 1 . Die x -afsnit word bepaal deur y = 0 te stel en is vroeër bereken as x i n t = 1 .

Grafiek van die funksie g ( x ) = x - 1

Teken die grafiek van y = 2 x + 2 .

  1. Om die y-afsnit te vind, stel x = 0 .

    y = 2 ( 0 ) + 2 = 2
  2. Om die x-afsnit te kry, stel y = 0 .

    0 = 2 x + 2 2 x = - 2 x = - 1

Afsnitte

  1. Skryf die y -afsnitte neer vir die volgende reguitlyngrafieke:
    1. y = x
    2. y = x - 1
    3. y = 2 x - 1
    4. y + 1 = 2 x
  2. Gee die vergelyking van die grafiek wat hieronder geskets is:
  3. Skets die volgende verbande op dieselfde assestelsel, merk die koördinate van die afsnitte duidelik: x + 2 y - 5 = 0 en 3 x - y - 1 = 0

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: wiskunde (graad 10) [caps]. OpenStax CNX. Aug 04, 2011 Download for free at http://cnx.org/content/col11328/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: wiskunde (graad 10) [caps]' conversation and receive update notifications?

Ask