<< Chapter < Page Chapter >> Page >

Front Panel of CTFT and Its Properties: Combination of Input Signals Tab

Varying pulse width

Keep the default values of Time shift (=0) and Time scaling (=1) and vary the Pulse width of the rectangular pulse. First, set the value of the Pulse width to its minimum value (=0.01) and then increase it. Observe that increasing the Pulse width in the time domain decrements the width in the frequency domain (see [link] ). When the Pulse width is set to its maximum value (=1) in the frequency domain, only one value can be seen at the center frequency indicating the signal is of DC type (refer to Properties of CTFT section of Chapter 5).

Magnitude Spectrum for Different Pulse Widths: (a) 0.01, (b) 0.2, (c) 0.5, (d) 1

Time shift

Next, for a fixed pulse width, vary the time shift. Observe that the phase spectrum changes but the magnitude spectrum remains the same. If the signal x ( t ) size 12{x \( t \) } {} is shifted by a constant t 0 size 12{t rSub { size 8{0} } } {} , its FT magnitude does not change, but the term ωt 0 size 12{ - ωt rSub { size 8{0} } } {} gets added to its phase angle. This verifies the time-shifting property of FT as stated in Properties of CTFT section of Chapter 5 (see [link] ).

Magnitude and Phase Spectrum for Different Time Shifts: (a) 0, (b) 0.2, (c) 0.5, (d) 0.7

Time scaling

Observe that increasing the control Time scaling makes the spectrum wider. This indicates that compressing the signal in the time domain leads to expansion in the frequency domain. This verifies the time-scaling property of FT as stated in Properties of CTFT section of Chapter 5 (see [link] ).

Magnitude Spectrum for Different Time Scalings: (a) 1, (b) 2, (c) 3, (d) 4

Linearity

Here, combine two signals to examine the linearity property of FT. Select Linear Combination for the Time domain and Frequency domain combination method. This selection combines two time signals, x 1 ( t ) size 12{x rSub { size 8{1} } \( t \) } {} and x 2 ( t ) size 12{x rSub { size 8{2} } \( t \) } {} , linearly with the scaling factors, a 1 size 12{a rSub { size 8{1} } } {} and a 2 size 12{a rSub { size 8{2} } } {} , producing a new signal, a 1 x 1 ( t ) + a 2 x 2 ( t ) size 12{a rSub { size 8{1} } x rSub { size 8{1} } \( t \) +a rSub { size 8{2} } x rSub { size 8{2} } \( t \) } {} . [link] displays the FT of this linear combination. The linear combination in the frequency domain produces a new signal, a 1 X 1 ( ω ) + a 2 X 2 ( ω ) size 12{a rSub { size 8{1} } X rSub { size 8{1} } \( ω \) +a rSub { size 8{2} } X rSub { size 8{2} } \( ω \) } {} . [link] also displays the inverse FT of this combination. Observe that both combinations produce the same result in the time and frequency domains, as indicated by the linearity property stated in Properties of CTFT section of Chapter 5.

Verifying the Linearity Property of CTFT

Time convolution

In this part, convolve two signals in the time domain to examine the time-convolution property of FT. Select Convolution for Time domain and Multiplication for Frequency domain. This selection produces and displays a new signal, x 1 ( t ) x 2 ( t ) size 12{x rSub { size 8{1} } \( t \) * x rSub { size 8{2} } \( t \) } {} , by convolving the two time signals x 1 ( t ) size 12{x rSub { size 8{1} } \( t \) } {} and x 2 ( t ) size 12{x rSub { size 8{2} } \( t \) } {} . Multiplication in the frequency domain produces a new signal, X 1 ( ω ) X 2 ( ω ) size 12{X rSub { size 8{1} } \( ω \) X rSub { size 8{2} } \( ω \) } {} . The inverse FT of this multiplied signal is also displayed on the right. Note that both combinations produce the same outcome in the time and frequency domains. This verifies the time-convolution property stated in the Properties of CTFT section of Chapter 5 (see [link] ).

Verifying the Time-Convolution Property of CTFT

Frequency convolution

Convolve two signals in the frequency domain to examine the frequency-convolution property of FT. Select Convolution for Frequency domain and Multiplication for Time domain. This selection convolves the two time signals X 1 ( ω ) size 12{X rSub { size 8{1} } \( ω \) } {} and X 2 ( ω ) size 12{X rSub { size 8{2} } \( ω \) } {} to produce a new signal, X 1 ( ω ) X 2 ( ω ) size 12{X rSub { size 8{1} } \( ω \) * X rSub { size 8{2} } \( ω \) } {} . The inverse FT of the convolved signal is displayed. Multiplication in Time domain produces a new signal, x 1 ( t ) x 2 ( t ) size 12{x rSub { size 8{1} } \( t \) x rSub { size 8{2} } \( t \) } {} . The FT of this multiplied signal is also displayed. Note that both combinations produce the same outcome in the time and frequency domains. This verifies the frequency-convolution property stated in the Properties of CTFT section of Chapter 5 (see [link] ).

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, An interactive approach to signals and systems laboratory. OpenStax CNX. Sep 06, 2012 Download for free at http://cnx.org/content/col10667/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'An interactive approach to signals and systems laboratory' conversation and receive update notifications?

Ask