-
Home
- Applied finite mathematics
- Applied finite mathematics
- More probability
Expected value
An expected gain or loss in a game of chance is called
Expected Value . The concept of expected value is closely related to a
weighted average . Consider the following situations.
-
Suppose you and your friend play a game that consists of rolling a die. Your friend offers you the following deal: If the die shows any number from 1 to 5, he will pay you the face value of the die in dollars, that is, if the die shows a 4, he will pay you $4. But if the die shows a 6, you will have to pay him $18.
Before you play the game you decide to find the expected value. You analyze as follows.
Since a die will show a number from 1 to 6, with an equal probability of
, your chance of winning $1 is
, winning $2 is
, and so on up to the face value of 5. But if the die shows a 6, you will lose $18. You write the expected value.
This means that every time you play this game, you can expect to lose 50 cents. In other words, if you play this game 100 times, theoretically you will lose $50. Obviously, it is not to your interest to play.
-
Suppose of the ten quizzes you took in a course, on eight quizzes you scored 80, and on two you scored 90. You wish to find the average of the ten quizzes. The average is
It should be observed that it will be incorrect to take the average of 80 and 90 because you scored 80 on eight quizzes, and 90 on only two of them. Therefore, you take a "weighted average" of 80 and 90. That is, the average of 8 parts of 80 and 2 parts of 90, which is 82.
In the first situation, to find the expected value, we multiplied each payoff by the probability of its occurrence, and then added up the amounts calculated for all possible cases. In the second part of
[link] , if we consider our test score a payoff, we did the same. This leads us to the following definition.
Expected Value
-
If an experiment has the following probability distribution,
Payoff |
|
Probability |
|
then the expected value of the experiment is
In a town, 10% of the families have three children, 60% of the families have two children, 20% of the families have one child, and 10% of the families have no children. What is the expected number of children to a family?
We list the information in the following table.
Number of Children |
3 |
2 |
1 |
0 |
Probability |
|
|
|
|
So on average, there are 1.7 children to a family.
Got questions? Get instant answers now! Got questions? Get instant answers now!
To sell an average house, a real estate broker spends $1200 for advertisement expenses. If the house sells in three months, the broker makes $8,000. Otherwise, the broker loses the listing. If there is a 40% chance that the house will sell in three months, what is the expected payoff for the real estate broker?
The broker makes $8,000 with a probability of
, but he loses $1200 whether the house sells or not.
.
Alternatively, the broker makes
with a probability of
, but loses $1200 with a probability of
. Therefore,
.
Got questions? Get instant answers now! Got questions? Get instant answers now!
Questions & Answers
1. Discuss the processes involved during exchange of fluids between intra and extracellular space.
what are components of cells
twugzfisfjxxkvdsifgfuy7 it
Sami
the difference between male and female reproduction
John
what is the full meaning of biology
IBRAHIM
what is sexual reproductive system
James
structure of an animal cell
what happens when the eustachian tube is blocked
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
location of cervical vertebra
define biology infour way
what is vertibrate
Jeneba
Got questions? Join the online conversation and get instant answers!
Source:
OpenStax, Applied finite mathematics. OpenStax CNX. Jul 16, 2011 Download for free at http://cnx.org/content/col10613/1.5
Google Play and the Google Play logo are trademarks of Google Inc.