<< Chapter < Page Chapter >> Page >

Evaluating a function given in tabular form

As we saw above, we can represent functions in tables. Conversely, we can use information in tables to write functions, and we can evaluate functions using the tables. For example, how well do our pets recall the fond memories we share with them? There is an urban legend that a goldfish has a memory of 3 seconds, but this is just a myth. Goldfish can remember up to 3 months, while the beta fish has a memory of up to 5 months. And while a puppy’s memory span is no longer than 30 seconds, the adult dog can remember for 5 minutes. This is meager compared to a cat, whose memory span lasts for 16 hours.

The function that relates the type of pet to the duration of its memory span is more easily visualized with the use of a table. See [link] . http://www.kgbanswers.com/how-long-is-a-dogs-memory-span/4221590. Accessed 3/24/2014.

Pet Memory span in hours
Puppy 0.008
Adult dog 0.083
Cat 16
Goldfish 2160
Beta fish 3600

At times, evaluating a function in table form may be more useful than using equations. Here let us call the function P . The domain    of the function is the type of pet and the range is a real number representing the number of hours the pet’s memory span lasts. We can evaluate the function P at the input value of “goldfish.” We would write P ( goldfish ) = 2160. Notice that, to evaluate the function in table form, we identify the input value and the corresponding output value from the pertinent row of the table. The tabular form for function P seems ideally suited to this function, more so than writing it in paragraph or function form.

Given a function represented by a table, identify specific output and input values.

  1. Find the given input in the row (or column) of input values.
  2. Identify the corresponding output value paired with that input value.
  3. Find the given output values in the row (or column) of output values, noting every time that output value appears.
  4. Identify the input value(s) corresponding to the given output value.

Evaluating and solving a tabular function

Using [link] ,

  1. Evaluate g ( 3 ) .
  2. Solve g ( n ) = 6.
n 1 2 3 4 5
g ( n ) 8 6 7 6 8
  1. Evaluating g ( 3 ) means determining the output value of the function g for the input value of n = 3. The table output value corresponding to n = 3 is 7, so g ( 3 ) = 7.
  2. Solving g ( n ) = 6 means identifying the input values, n , that produce an output value of 6. [link] shows two solutions: 2 and 4.
n 1 2 3 4 5
g ( n ) 8 6 7 6 8

When we input 2 into the function g , our output is 6. When we input 4 into the function g , our output is also 6.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Using [link] , evaluate g ( 1 ) .

g ( 1 ) = 8

Got questions? Get instant answers now!

Finding function values from a graph

Evaluating a function using a graph also requires finding the corresponding output value for a given input value, only in this case, we find the output value by looking at the graph. Solving a function equation using a graph requires finding all instances of the given output value on the graph and observing the corresponding input value(s).

Reading function values from a graph

Given the graph in [link] ,

  1. Evaluate f ( 2 ) .
  2. Solve f ( x ) = 4.
Graph of a positive parabola centered at (1, 0).
  1. To evaluate f ( 2 ) , locate the point on the curve where x = 2 , then read the y -coordinate of that point. The point has coordinates ( 2 , 1 ) , so f ( 2 ) = 1. See [link] .
    Graph of a positive parabola centered at (1, 0) with the labeled point (2, 1) where f(2) =1.
  2. To solve f ( x ) = 4, we find the output value 4 on the vertical axis. Moving horizontally along the line y = 4 , we locate two points of the curve with output value 4: ( −1 , 4 ) and ( 3 , 4 ) . These points represent the two solutions to f ( x ) = 4: −1 or 3. This means f ( −1 ) = 4 and f ( 3 ) = 4 , or when the input is −1 or 3, the output is 4 . See [link] .
    Graph of an upward-facing parabola with a vertex at (0,1) and labeled points at (-1, 4) and (3,4). A line at y = 4 intersects the parabola at the labeled points.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

explain the basic method of power of power rule under indices.
Sumo Reply
Why is b in the answer
Dahsolar Reply
how do you work it out?
Brad Reply
answer
Ernest
heheheehe
Nitin
(Pcos∅+qsin∅)/(pcos∅-psin∅)
John Reply
how to do that?
Rosemary Reply
what is it about?
Amoah
how to answer the activity
Chabelita Reply
how to solve the activity
Chabelita
solve for X,,4^X-6(2^)-16=0
Alieu Reply
x4xminus 2
Lominate
sobhan Singh jina uniwarcity tignomatry ka long answers tile questions
harish Reply
t he silly nut company makes two mixtures of nuts: mixture a and mixture b. a pound of mixture a contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $4. a pound of mixture b contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. the company has 1080
ZAHRO Reply
If  , , are the roots of the equation 3 2 0, x px qx r     Find the value of 1  .
Swetha Reply
Parts of a pole were painted red, blue and yellow. 3/5 of the pole was red and 7/8 was painted blue. What part was painted yellow?
Patrick Reply
Parts of the pole was painted red, blue and yellow. 3 /5 of the pole was red and 7 /8 was painted blue. What part was painted yellow?
Patrick
how I can simplify algebraic expressions
Katleho Reply
Lairene and Mae are joking that their combined ages equal Sam’s age. If Lairene is twice Mae’s age and Sam is 69 yrs old, what are Lairene’s and Mae’s ages?
Mary Reply
23yrs
Yeboah
lairenea's age is 23yrs
ACKA
hy
Katleho
Ello everyone
Katleho
Laurene is 46 yrs and Mae is 23 is
Solomon
hey people
christopher
age does not matter
christopher
solve for X, 4^x-6(2*)-16=0
Alieu
prove`x^3-3x-2cosA=0 (-π<A<=π
Mayank Reply
create a lesson plan about this lesson
Rose Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask