<< Chapter < Page Chapter >> Page >

x = 2 π - θ = 2 π - π 3 = 5 π 3

Problem : Find angles in [0,2π], if

cot x = 1 3

Solution : Considering only the magnitude of numerical value, we have :

cot θ = 1 3 = cot π 3

Thus, required acute angle is π/3. Now, cotangent function is positive in first and third quadrants. Looking at the value diagram, the angle in third quadrant is :

x = π + θ = π + π 3 = 4 π 3

Hence angles are π/3 and 4π/3.

Negative angles

When we consider angle as a real number entity, we need to express angles as negative angles as well. The corresponding negative angle (y) is obtained as :

y = x - 2 π

Thus, negative angles corresponding to 4π/3 and 5π/3 are :

y = 4 π 3 - 2 π = - 2 π 3 y = 5 π 3 - 2 π = - π 3

We can also find negative angle values using a separate negative value diagram (see figure). We draw negative value diagram by demarking quadrants with corresponding angles and writing angle values for negative values. We deduct “2π” from the relation for positive value diagram.

Trigonometric value diagram

Trigonometric value diagram for negative angles

Let us consider sinx = -√3/2 again. The acute angle in first quadrant is π/3. Sine is negative in third and fourth quadrants. The angles in these quadrants are :

y = - π + θ = - π + π 3 = - 2 π 3 y = - θ = - π 3

Trigonometric equations

Zeroes of sine and cosine functions

Trigonometric equations are formed by equating trigonometric functions to zero. The solutions of these equations are :

1 : sin x = 0 x = n π ; n Z

2 : cos x = 0 x = 2 n + 1 π 2 ; n Z

Definition of other trigonometric functions

We define other trigonometric functions in the light of zeroes of sine and cosine as listed above :

tan x = sin x cos x ; x 2 n + 1 π 2 ; n Z cot x = cos x sin x ; x n π ; n Z cosec x = 1 sin x ; x n π ; n Z sec x = 1 cos x ; x 2 n + 1 π 2 ; n Z

Trigonometric equations

Trigonometric function can be used to any other values as well. Solutions of such equations are given here without deduction for reference purpose. Solutions of three equations involving sine, cosine and tangent functions are listed here :

1. Sine equation

sin x = a = sin y

x = n π + - 1 n y ; n Z

2. Cosine equation

cos x = a = cos y

x = 2 n π ± y ; n Z

3. Tangent equation

tan x = a = tan y

x = n π + y ; n Z

In order to understand the working with trigonometric equation, let us consider an equation :

sin x = - 3 2

As worked out earlier, -√3/2 is sine value of two angles in the interval [0, π]. Important question here is to know which angle should be used in the solution set. Here,

sin 4 π 3 = sin 5 π 3 = - 3 2

We can write general solution using either of two values.

x = n π + - 1 n 4 π 3 ; n Z x = n π + - 1 n 5 π 3 ; n Z

The solution sets appear to be different, but are same on expansion. Conventionally, however, we use the smaller of two angles which lie in the interval [0, π]. In order to check that two series are indeed same, let us expand series from n=-4 to n=4,

For x = n π + - 1 n 4 π 3 ; n Z

- 4 π + 4 π 3 = - 8 π 3 , - 3 π - 4 π 3 = - 13 π 3 , - 2 π + 4 π 3 = - 2 π 3 , - π - 4 π 3 = - 7 π 3 ,

0 + 4 π / 3 = 4 π 3 , π - 4 π 3 = - π 3 , 2 π + 4 π 3 = 10 π 3 , 3 π - 4 π 3 = 5 π 3 , 4 π + 4 π 3 = 16 π 3

Arranging in increasing order :

- 13 π 3 , - 8 π 3 , - 7 π 3 , - 2 π 3 , - π 3 , 4 π 3 , 5 π 3 , 10 π 3 , 16 π 3

For x = n π + - 1 n 5 π 3 ; n Z

- 4 π + 5 π 3 = - 7 π 3 , - 3 π - 5 π 3 = - 14 π 3 , - 2 π + 5 π 3 = - π 3 , - π - 5 π 3 = - 8 π 3 ,

0 + 5 π 3 = 5 π 3 , π - 5 π 3 = - 2 π 3 , 2 π + 5 π 3 = 11 π 3 , 3 π - 5 π 3 = 4 π 3 , 4 π + 5 π 3 = 17 π 3

Arranging in increasing order :

- 14 π 3 , - 8 π 3 , - 7 π 3 , - 2 π 3 , - π 3 , 4 π 3 , 5 π 3 , 11 π 3 , 17 π 3

We see that there are common terms. There are, however, certain terms which do not appear in other series. We can though find those missing terms by evaluating some more values. For example, if we put n = 6 in the second series, then we get the missing term -13π/3. Also, putting n=5,7, we get 10π/3 and 16π/3. Thus, all missing terms in second series are obtained. Similarly, we can compute few more values in first series to find missing terms. We, therefore, conclude that both these series are equal.

Problem : Find solution of equation :

2 cos 2 x + 3 sin x = 0

Solution : Our objective here is to covert equation to linear form. Here, we can not convert sine term to cosine term, but we can convert cos 2 x in terms of sin 2 x .

2 1 - sin 2 x + 3 sin x = 0 2 - 2 sin 2 x + 3 sin x = 0 2 sin 2 x 3 sin x 2 = 0

It is a quadratic equation in sinx. Factoring, we have :

2 sin 2 x + sin x 4 sin x 2 = 0 sin x 2 sin x + 1 2 2 sin x + 1 = 0 2 sin x + 1 sin x 2 = 0

Either, sinx=-1/2 or sinx = 2. But sinx can not be equal to 2. hence,

sin x = - 1 2 = sin π + π 6 = sin 7 π 6 x = n π + - 1 n 7 π 6 ; n Z

Note : We shall not work with any other examples here as purpose of this module is only to introduce general concepts of angles, identities and equations. These topics are part of separate detailed study.

Trigonometric identities

Reciprocal identities

Reciprocals are defined for values of x for which trigonometric function in the denominator is not zero.

sin x = 1 cosec x ; cos x = 1 sec x ; tan x = 1 cot x ; cosec x = 1 sin x ; sec x = 1 cos x ; cot x = 1 tan x

Negative angle identities

cos - x = cos x ; sin - x = - sin x ; tan - x = - tan x

Pythagorean identities

cos 2 x + sin 2 x = 1 ; 1 + tan 2 x = sec 2 x ; 1 + cot 2 x = cosec 2 x

Sum/difference identities

sin x ± y = sin x cos y ± sin y cos x cos x ± y = cos x cos y sin x sin y tan x ± y = tan s x ± tan y / 1 tan x tan y ; x,y and (x+y) are not odd multiple of π/2 cot x ± y = cot x cot y 1 / cot y ± cot x ; x,y and (x+y) are not odd multiple of π/2

Double angle identities

sin 2 x = 2 sin x cos x = 2 tan x 1 + tan 2 x cos 2 x = cos 2 x - sin 2 x = 2 cos 2 x - 1 = 1 - 2 sin 2 x = 1 - tan 2 x 1 + tan 2 x tan 2 x = 2 tan x 1 - tan 2 x cot 2 x = cot 2 x - 1 2 cot x

Triple angle identities

sin 3 x = 3 sin x 4 sin 3 x cos 3 x = 4 cos 3 x 3 cos x tan 3 x = 3 tan x tan 3 x 1 - 3 tan 2 x cot 3 x = 3 cot x cot 3 x 1 - 3 cot 2 x

Power reduction identities

sin 2 x = 1 - cos 2 x 2 cos 2 x = 1 + cos 2 x 2 sin 3 x = 3 sin x sin 3 x 4 cos 3 x = cos 3 x + 3 cos x 4

Product to sum identities

2 sin x cos y = sin x + y + sin x - y 2 cos x sin y = sin x + y - sin x - y 2 cos x cos y = cos x + y + cos x - y 2 sin x sin y = - cos x + y + cos x - y = cos x - y - cos x + y

Sum to product identities

sin x + sin y = 2 sin x + y 2 cos x - y 2 sin x - sin y = 2 cos x + y 2 sin x - y 2 cos x + cos y = 2 cos x + y 2 cos x - y 2 cos x - cos y = - 2 sin x + y 2 sin x - y 2 = 2 sin x + y 2 sin y - x 2

Half angle identities

sin x 2 = ± { 1 - cos x 2 } cos x 2 = ± { 1 + cos x 2 } tan x 2 = cosec x cot x = ± { 1 cos x 1 + cos x } = sin x 1 + cos x = 1 cos x sin x cot x 2 = cosec x + cot x = ± { 1 + cos x 1 cos x } = sin x 1 cos x = 1 + cos x sin x

Questions & Answers

discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what's cornea?
Majak Reply
what are cell
Achol
Explain the following terms . (1) Abiotic factors in an ecosystem
Nomai Reply
Abiotic factors are non living components of ecosystem.These include physical and chemical elements like temperature,light,water,soil,air quality and oxygen etc
Qasim
Define the term Abiotic
Marial
what is biology
daniel Reply
what is diffusion
Emmanuel Reply
passive process of transport of low-molecular weight material according to its concentration gradient
AI-Robot
what is production?
Catherine
hello
Marial
Pathogens and diseases
how did the oxygen help a human being
Achol Reply
how did the nutrition help the plants
Achol Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Functions. OpenStax CNX. Sep 23, 2008 Download for free at http://cnx.org/content/col10464/1.64
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Functions' conversation and receive update notifications?

Ask