<< Chapter < Page Chapter >> Page >
Two pairs of images are shown. The left pair, labeled, “C, ( diamond ),” has a picture of a diamond held by a pair of plyers and a diagram of the molecular arrangement. The second pair, labeled, “C ( graphite ),” has a picture of a large, black, slightly shiny rock and a diagram of four sheets composed of many atoms arranged in large squares in a stacked arrangement with space between each.
The conversion of carbon from the diamond allotrope to the graphite allotrope is spontaneous at ambient pressure, but its rate is immeasurably slow at low to moderate temperatures. This process is known as graphitization , and its rate can be increased to easily measurable values at temperatures in the 1000–2000 K range. (credit "diamond" photo: modification of work by "Fancy Diamonds"/Flickr; credit "graphite" photo: modificaton of work by images-of-elements.com/carbon.php)

Dispersal of matter and energy

As we extend our discussion of thermodynamic concepts toward the objective of predicting spontaneity, consider now an isolated system consisting of two flasks connected with a closed valve. Initially there is an ideal gas on the left and a vacuum on the right ( [link] ). When the valve is opened, the gas spontaneously expands to fill both flasks. Recalling the definition of pressure-volume work from the chapter on thermochemistry, note that no work has been done because the pressure in a vacuum is zero.

w = P Δ V = 0 ( P = 0 in a vaccum )

Note as well that since the system is isolated, no heat has been exchanged with the surroundings ( q = 0). The first law of thermodynamics confirms that there has been no change in the system’s internal energy as a result of this process.

Δ U = q + w = 0 + 0 = 0

The spontaneity of this process is therefore not a consequence of any change in energy that accompanies the process. Instead, the driving force appears to be related to the greater, more uniform dispersal of matter that results when the gas is allowed to expand. Initially, the system was comprised of one flask containing matter and another flask containing nothing. After the spontaneous process took place, the matter was distributed both more widely (occupying twice its original volume) and more uniformly (present in equal amounts in each flask).

A diagram shows two two-sided flasks connected by a right-facing arrow labeled “Spontaneous” and a left-facing arrow labeled “Nonspontaneous.” Each pair of flasks are connected to one another by a tube with a stopcock. In the left pair of flasks, the left flask contains thirty particles evenly dispersed while the right flask contains nothing and the stopcock is closed. The right pair of flasks has an open stopcock and equal numbers of particles in both flasks.
An isolated system consists of an ideal gas in one flask that is connected by a closed valve to a second flask containing a vacuum. Once the valve is opened, the gas spontaneously becomes evenly distributed between the flasks.

Now consider two objects at different temperatures: object X at temperature T X and object Y at temperature T Y , with T X > T Y ( [link] ). When these objects come into contact, heat spontaneously flows from the hotter object (X) to the colder one (Y). This corresponds to a loss of thermal energy by X and a gain of thermal energy by Y.

q X < 0 and q Y = q X > 0

From the perspective of this two-object system, there was no net gain or loss of thermal energy, rather the available thermal energy was redistributed among the two objects. This spontaneous process resulted in a more uniform dispersal of energy .

Two diagrams are shown. The left diagram is comprised of two separated squares; the left is red and labeled “X” and the right is blue and labeled “Y.” Below this diagram is the label “T subscript X, a greater than sign, T subscript Y.” The right diagram shows the boxes next to one another, shaded red on the left, blue on the right, and blended red and blue together in the middle. The left box is red and labeled “X,” the right is blue and labeled “Y” and a right-facing arrow labeled “Heat” is written above them. Below this diagram is the label “X and Y in contact.
When two objects at different temperatures come in contact, heat spontaneously flows from the hotter to the colder object.

As illustrated by the two processes described, an important factor in determining the spontaneity of a process is the extent to which it changes the dispersal or distribution of matter and/or energy. In each case, a spontaneous process took place that resulted in a more uniform distribution of matter or energy.

Redistribution of matter during a spontaneous process

Describe how matter is redistributed when the following spontaneous processes take place:

(a) A solid sublimes.

(b) A gas condenses.

(c) A drop of food coloring added to a glass of water forms a solution with uniform color.

Solution

This figure has three photos labeled, “a,” “b,” and “c.” Photo a shows a glass with a solid in water. There is steam or smoke coming from the top of the glass. Photo b shows the bottom half of a glass with water sticking to its outside surface. Photo c shows a sealed container that holds a red liquid.
(credit a: modification of work by Jenny Downing; credit b: modification of work by “Fuzzy Gerdes”/Flickr; credit c: modification of work by Sahar Atwa)

(a) Sublimation is the conversion of a solid (relatively high density) to a gas (much lesser density). This process yields a much greater dispersal of matter, since the molecules will occupy a much greater volume after the solid-to-gas transition.

(b) Condensation is the conversion of a gas (relatively low density) to a liquid (much greater density). This process yields a much lesser dispersal of matter, since the molecules will occupy a much lesser volume after the solid-to-gas transition.

(c) The process in question is dilution. The food dye molecules initially occupy a much smaller volume (the drop of dye solution) than they occupy once the process is complete (in the full glass of water). The process therefore entails a greater dispersal of matter. The process may also yield a more uniform dispersal of matter, since the initial state of the system involves two regions of different dye concentrations (high in the drop, zero in the water), and the final state of the system contains a single dye concentration throughout.

Check your learning

Describe how matter and/or energy is redistributed when you empty a canister of compressed air into a room.

Answer:

This is also a dilution process, analogous to example (c). It entails both a greater and more uniform dispersal of matter as the compressed air in the canister is permitted to expand into the lower-pressure air of the room.

Got questions? Get instant answers now!

Key concepts and summary

Chemical and physical processes have a natural tendency to occur in one direction under certain conditions. A spontaneous process occurs without the need for a continual input of energy from some external source, while a nonspontaneous process requires such. Systems undergoing a spontaneous process may or may not experience a gain or loss of energy, but they will experience a change in the way matter and/or energy is distributed within the system.

Chemistry end of chapter exercises

What is a spontaneous reaction?

A reaction has a natural tendency to occur and takes place without the continual input of energy from an external source.

Got questions? Get instant answers now!

What is a nonspontaneous reaction?

Got questions? Get instant answers now!

Indicate whether the following processes are spontaneous or nonspontaneous.

(a) Liquid water freezing at a temperature below its freezing point

(b) Liquid water freezing at a temperature above its freezing point

(c) The combustion of gasoline

(d) A ball thrown into the air

(e) A raindrop falling to the ground

(f) Iron rusting in a moist atmosphere

(a) spontaneous; (b) nonspontaneous; (c) spontaneous; (d) nonspontaneous; (e) spontaneous; (f) spontaneous

Got questions? Get instant answers now!

A helium-filled balloon spontaneously deflates overnight as He atoms diffuse through the wall of the balloon. Describe the redistribution of matter and/or energy that accompanies this process.

Got questions? Get instant answers now!

Many plastic materials are organic polymers that contain carbon and hydrogen. The oxidation of these plastics in air to form carbon dioxide and water is a spontaneous process; however, plastic materials tend to persist in the environment. Explain.

Although the oxidation of plastics is spontaneous, the rate of oxidation is very slow. Plastics are therefore kinetically stable and do not decompose appreciably even over relatively long periods of time.

Got questions? Get instant answers now!
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask