The student will compare and contrast empirical data and a theoretical distribution to determine if Terry Vogel's lap times fit a continuous distribution.
Directions:
Round the relative frequencies and probabilities to 4 decimal places. Carry all other decimal answers to 2 places.
Collect the data
Use the data from
Terri Vogel’s Log Book . Use a Stratified Sampling Method by Lap (Races 1 – 20) and a random number generator to pick 6 lap times from each stratum. Record the lap times below for Laps 2 – 7.
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
Construct a histogram. Make 5 - 6 intervals. Sketch the graph using a ruler and pencil. Scale the axes.
Calculate the following.
Draw a smooth curve through the tops of the bars of the histogram. Use 1 – 2 complete sentences to describe the general shape of the curve. (Keep it simple. Does the graph go straight across, does it have a V-shape, does it have a hump in the middle or at either end, etc.?)
Analyze the distribution
Using your sample mean, sample standard deviation, and histogram to help, what was the approximate theoretical distribution of the data?
~
How does the histogram help you arrive at the approximate distribution?
Describe the data
Use the Data from the section titled "Collect the Data" to complete the following statements.
The IQR goes from __________ to __________.
IQR = __________. (IQR=Q3-Q1)
The 15th percentile is:
The 85th percentile is:
The median is:
The empirical probability that a randomly chosen lap time is more than 130 seconds =
Explain the meaning of the 85th percentile of this data.
Theoretical distribution
Using the theoretical distribution from the section titled "Analyse the Distribution" complete the following statements:
The IQR goes from __________ to __________.
IQR =
The 15th percentile is:
The 85th percentile is:
The median is:
The probability that a randomly chosen lap time is more than 130 seconds =
Explain the meaning of the 85th percentile of this distribution.
Discussion questions
Do the data from the section titled "Collect the Data" give a close approximation to the theoretical distibution in the section titled "Analyze the Distribution"? In complete sentences and comparing the result in the sections titled "Describe the Data" and "Theoretical Distribution", explain why or why not.
Questions & Answers
A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?