<< Chapter < Page Chapter >> Page >

Do thời gian hồi phục rất nhỏ ( đổi trạng thái nhanh) nên diode schottky được dùng rất phổ biến trong kỹ thuật số và điều khiển.

Diode ổn áp (diode zener):

Như đã khảo sát ở phần trước, khi điện thế phân cực nghịch của diode lớn, những hạt tải điện sinh ra dưới tác dụng nhiệt bị điện trường mạnh trong vùng hiếm tăng vận tốc và phá vỡ các nối hoá trị trong chất bán dẫn. Cơ chế này cứ chồng chất vầ sau cùng ta có dòng điện ngược rất lớn. Ta nói diode đang ở trong vùng bị phá huỷ theo hiện tượng tuyết đổ và gây hư hỏng nối P-N.

Ta cũng có một loại phá huỷ khác do sự phá huỷ trực tiếp các nối hoá trị dưới tác dụng của điện trường. Sự phá huỷ này có tính hoàn nghịch, nghĩa là khi điện trường hết tác dụng thì các nối hoá trị được lập lại, ta gọi hiện tượng này là hiệu ứng Zener.

Hiệu ứng này được ứng dụng để chế tạo các diode Zener. Bằng cách thay đổi nồng độ chất pha, người ta có thể chế tạo được các diode Zener có điện thế Zener khoảng vài volt đến vài hàng trăm volt. Để ý là khi phân cực thuận, đặc tuyến của diode Zener giống hệt diode thường (diode chỉnh lưu). Đặc tuyến được dùng của diode Zener là khi phân cực nghịch ở vùng Zener, điện thế ngang qua diode gần như không thay đôi trong khi dòng điện qua nó biến thiên một khoảng rộng.

* Ảnh hưởng của nhiệt độ:

Khi nhiệt độ thay đổi, các hạt tải điện sinh ra cũng thay đổi theo:

  • Với các diode Zener có điện thế Zener VZ<5V thì khi nhiệt độ tăng, điện thế Zener giảm.
  • Với các diode có điện thế Zener VZ>5V (còn được gọi là diode tuyết đổ-diode avalanche) lại có hệ số nhiệt dương (VZ tăng khi nhiệt độ tăng).
  • Với các diode Zener có VZ nằm xung quanh 5V gần như VZ không thay đổi theo nhiệt độ.

* Kiểu mẫu lý tưởng của diode Zener:

Trong kiểu mẫu lý tưởng, diode Zener chỉ dẫn điện khi điện thế phân cực nghịch lớn hay bằng điện thế VZ. Điện thế ngang qua diode Zener không thay đổi và bằng điện thế VZ­. Khi điện thế phân cực nghịch nhỏ hơn hay bằng điện thế VZ, diode Zener không dẫn điện (ID=0).

Do tính chất trên, diode zener thường được dùng để chế tạo điện thế chuẩn.

Thí dụ: mạch tao điện thế chuẩn 4,3V dùng diode zener 1N749 như sau:

Khi chưa mắc tải vào, thí dụ nguồn VS=15V, thì dòng qua zener là:

I = V S V Z R = 15 4,3 470 = 22 , 8 mA size 12{I= { {V rSub { size 8{S} } - V rSub { size 8{Z} } } over {R} } = { {"15" - 4,3} over {"470"} } ="22",8 ital "mA"} {}

* Kiểu mẫu của diode zener đối với điện trở động:

Thực tế, trong vùng zener, khi dòng điện qua diode tăng, điện thế qua zener cũng tăng chút ít chứ không phải cố định như kiểu mẫu lý tưởng.

Người ta định nghĩa điện trở động của diode là:

r = Z Z = V ZT V ZO I ZT size 12{r=Z rSub { size 8{Z} } = { {V rSub { size 8{ ital "ZT"} } - V rSub { size 8{ ital "ZO"} } } over {I rSub { size 8{ ital "ZT"} } } } } {}

Trong đó: VZO là điện thế nghịch bắt đầu dòng điện tăng.

VZT là điện thế ngang qua hai đầu diode ở dòng điện sử dụng IZT.

Diode biến dung: (varicap – varactor diode)

Phần trên ta đã thấy, sự phân bố điện tích dương và âm trong vùng hiếm thay đổi khi điện thế phân cực nghịch thay đổi, tạo ra giữa hai đầu diode một điện dung:

C T = ΔQ ΔV = ε A W d size 12{C rSub { size 8{T} } = lline { {ΔQ} over {ΔV} } rline =ε { {A} over {W rSub { size 8{d} } } } } {}

Điện dung chuyển tiếp CT tỉ lệ nghịch với độ rộng của vùng hiếm, tức tỉ lệ nghịch với điện thế phân cực.

Đặc tính trên được ứng dụng để chế tạo diode biến dung mà trị số điện dung sẽ thay đổi theo điện thế phân cực nghịch nên còn được gọi là VVC diode (voltage-variable capacitance diode). Điện dung này có thể thay đổi từ 5pF đến 100pF khi điện thế phân cực nghịch thay đổi từ 3 đến 25V.

Một ứng dụng của diode là dùng nó như một tụ điện thay đổi. Thí dụ như muốn thay đổi tần số cộng hưởng của một mạch, người ta thay đổi điện thế phân cực nghịch của một diode biến dung.

Diode hầm (tunnel diode)

Được chế tạo lần đầu tiên vào năm 1958 bởi Leo-Esaki nên còn được gọi là diode Esaki. Đây là một loại diode đặc biệt được dùng khác với nhiều loại diode khác. Diode hầm có nồng độ pha chất ngoại lai lớn hơn diode thường rất nhiều (cả vùng P lẫn vùng N)

Đặc tuyến V-I có dạng như sau:

Khi phân cực nghịch, dòng điện tăng theo điện thế. Khi phân cực thuận, ở điện thế thấp, dòng điện tăng theo điện thế nhưng khi lên đến đỉnh A (VP IP), dòng điện lại tự động giảm trong khi điện thế tăng. Sự biến thiên nghịch này đến thung lũng B (VV IV). Sau đó, dòng điện tăng theo điện thế như diode thường có cùng chất bán dẫn cấu tạo. Đặc tính cụ thể của diode hầm tùy thuộc vào chất bán dẫn cấu tạo Ge, Si, GaAs (galium Asenic), GaSb (galium Atimonic)… Vùng AB là vùng điện trở âm (thay đổi từ khoảng 50 đến 500 mV). Diode được dùng trong vùng điện trở âm này. Vì tạp chất cao nên vùng hiếm của diode hầm quá hẹp (thường khoảng 1/100 lần độ rộng vùng hiếm của diode thường), nên các hạt tải điện có thể xuyên qua mối nối theo hiện tượng chui hầm nên được gọi là diode hầm.

Tỉ số Ip/Iv rất quan trọng trong ứng dụng. Tỉ số này khoảng 10:1 đối với Ge và 20:1 đối với GaAs.

Mạch tương đương của diode hầm trong vùng điện trở âm như sau:

Ls: Biểu thị điện cảm của diode, có trị số từ 1nH đến 12nH.

RD: Điện trở chung của vùng P và N.

CD: Điện dung khuếch tán của vùng hiếm.

Thí dụ, ở diode hầm Ge 1N2939: Ls=6nH, CD=5pF,Rd=-152, RD=1,5

Diode có vùng hiếm hẹp nên thời gian hồi phục nhỏ, dùng tốt ở tần số cao. Nhược điểm của diode hầm là vùng điện trở âm phi tuyến, vùng điện trở âm lại ở điện thế thấp nên khó dùng với điện thế cao, nồng độ chất pha cao nên muốn giảm nhỏ phải chế tạo mỏng manh. Do đó, diode hầm dần dần bị diode schottky thay thế.

Ứng dụng thông dụng của diode hầm là làm mạch dao động ở tần số cao.

Bài tập cuối chương

  1. Dùng kiểu mẫu lý tưởng và điện thế ngưỡng của diode để tính dòng điện I1, I2, ID2 trong mạch điện sau:
  1. I2Tính dòng điện I1 và VO trong mạch sau (dùng kiểu mẫu lý tưởng và điện thế ngưỡng của diode)
  1. Tính IZ, VO trong mạch điện sau khi R2 = 50 và khi R2 = 200. Cho biết Zener sử dụng có VZ = 6V.
  1. Tính I, VO trong mạch sau, cho biết Zener có VZ = 8V.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Mạch điện tử. OpenStax CNX. Aug 07, 2009 Download for free at http://cnx.org/content/col10892/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Mạch điện tử' conversation and receive update notifications?

Ask