<< Chapter < Page Chapter >> Page >

Development of the placenta

During the first several weeks of development, the cells of the endometrium—referred to as decidual cells—nourish the nascent embryo. During prenatal weeks 4–12, the developing placenta gradually takes over the role of feeding the embryo, and the decidual cells are no longer needed. The mature placenta is composed of tissues derived from the embryo, as well as maternal tissues of the endometrium. The placenta connects to the conceptus via the umbilical cord    , which carries deoxygenated blood and wastes from the fetus through two umbilical arteries; nutrients and oxygen are carried from the mother to the fetus through the single umbilical vein. The umbilical cord is surrounded by the amnion, and the spaces within the cord around the blood vessels are filled with Wharton’s jelly, a mucous connective tissue.

The maternal portion of the placenta develops from the deepest layer of the endometrium, the decidua basalis. To form the embryonic portion of the placenta, the syncytiotrophoblast and the underlying cells of the trophoblast (cytotrophoblast cells) begin to proliferate along with a layer of extraembryonic mesoderm cells. These form the chorionic membrane    , which envelops the entire conceptus as the chorion. The chorionic membrane forms finger-like structures called chorionic villi    that burrow into the endometrium like tree roots, making up the fetal portion of the placenta. The cytotrophoblast cells perforate the chorionic villi, burrow farther into the endometrium, and remodel maternal blood vessels to augment maternal blood flow surrounding the villi. Meanwhile, fetal mesenchymal cells derived from the mesoderm fill the villi and differentiate into blood vessels, including the three umbilical blood vessels that connect the embryo to the developing placenta ( [link] ).

Cross-section of the placenta

This figure shows the location and structure of the placenta. The left panel shows a fetus in the womb. The right panel shows a magnified view of a small region including the placenta and the blood vessels.
In the placenta, maternal and fetal blood components are conducted through the surface of the chorionic villi, but maternal and fetal bloodstreams never mix directly.

The placenta develops throughout the embryonic period and during the first several weeks of the fetal period; placentation    is complete by weeks 14–16. As a fully developed organ, the placenta provides nutrition and excretion, respiration, and endocrine function ( [link] and [link] ). It receives blood from the fetus through the umbilical arteries. Capillaries in the chorionic villi filter fetal wastes out of the blood and return clean, oxygenated blood to the fetus through the umbilical vein. Nutrients and oxygen are transferred from maternal blood surrounding the villi through the capillaries and into the fetal bloodstream. Some substances move across the placenta by simple diffusion. Oxygen, carbon dioxide, and any other lipid-soluble substances take this route. Other substances move across by facilitated diffusion. This includes water-soluble glucose. The fetus has a high demand for amino acids and iron, and those substances are moved across the placenta by active transport.

Maternal and fetal blood does not commingle because blood cells cannot move across the placenta. This separation prevents the mother’s cytotoxic T cells from reaching and subsequently destroying the fetus, which bears “non-self” antigens. Further, it ensures the fetal red blood cells do not enter the mother’s circulation and trigger antibody development (if they carry “non-self” antigens)—at least until the final stages of pregnancy or birth. This is the reason that, even in the absence of preventive treatment, an Rh mother doesn’t develop antibodies that could cause hemolytic disease in her first Rh + fetus.

Questions & Answers

what are the types of homeostasis
Odey Reply
diagram of the digestive system
Zainab Reply
drown and level female reproductive system
Anas
anatomy
Anas
What is the best way to indicate the sperm
ADAM Reply
Definition of pathology
Promise Reply
what are the body organs and their functions
Comforter Reply
what are the body organs and their functions
Ruth
musculoskeletal
Ruth
what is cell
Oppicial Reply
a cell is the smallest structural and functional unit of life.
Patrick
To know how bones are functions
DAUDA Reply
diagram of the heart
Victoria Reply
what are the layers of the muscles
Tongdock Reply
What is Amebae
Najibu Reply
the collection of fluids in the throat is cause by what
Emmanuel Reply
what is difference between meiosis and mitosis
Aishetu Reply
what is difference between mitosis and meiosis
Aishetu
What is Anatomy
Najibu Reply
What the difference between the Anatomy and physiology
Najibu
What is the meaning of chromoprotein
Aisha Reply
what is cartilage
Abdulkadir Reply
tough , white fibrous tissue
Henry
drowning and level female reproductive system
Anas Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask