<< Chapter < Page Chapter >> Page >

Mathematics

Decimal fractions

Educator section

Memorandum

2.

Temperature Swimmers

Volume Athletes

Measurement Odometer

Distance Scientists

Scales Engineers

Money

3.1 a) 6 100 size 12{ { { size 8{6} } over { size 8{"100"} } } } {}

b) 2 1000 size 12{ { { size 8{2} } over { size 8{"1000"} } } } {}

c) 200

d) 2 10 size 12{ { { size 8{2} } over { size 8{"10"} } } } {}

e) 80

f) 9 1000 size 12{ { { size 8{9} } over { size 8{"1000"} } } } {}

g) 2 000

h) 8 100 size 12{ { { size 8{8} } over { size 8{"100"} } } } {}

i) 5 10 size 12{ { { size 8{5} } over { size 8{"10"} } } } {}

j) 8 1000 size 12{ { { size 8{8} } over { size 8{"1000"} } } } {}

  • a) 9 10 size 12{ { { size 8{9} } over { size 8{"10"} } } } {}

b) 3 10 size 12{ { { size 8{3} } over { size 8{"10"} } } } {} 8 100 size 12{ { { size 8{8} } over { size 8{"100"} } } } {}

c) 8 10 size 12{ { { size 8{8} } over { size 8{"10"} } } } {} 2 100 size 12{ { { size 8{2} } over { size 8{"100"} } } } {} 4 1000 size 12{ { { size 8{4} } over { size 8{"1000"} } } } {}

d) 3 10 size 12{ { { size 8{3} } over { size 8{"10"} } } } {} 8 1000 size 12{ { { size 8{8} } over { size 8{"1000"} } } } {}

5. a) 0,12; 0,18; 0,24; 0,3; 0,36;

0,42; 0,48; 0,54; 0,6; 0,66

b) 0,018; 0,027; 0,036; 0,045;

0,054; 0,063; 0,072; 0,081; 0,09

c) 7,4; 11,1; 14,8; 18,5;

22,2; 25,9; 29,6; 33,3; 37

6. a) 0,8; 1,0; 1,2; 1,4

b) 5,5; 5; 4,5; 4

c) 0,989; 0,986; 0,983;

0,98; 0,977

d) 0,016; 0,02; 0,024;

0,028; 0,032

7. +20 +100 +0,003

+0,3

+0,07 +0,13 +0,05

+0,3

+0,007 +0,12 +0,009

8. a) 1,0

b) 3,2

c) 0,75

d) 4,2

e) 1,4

f) 2,9

g) 3,15

h) 3,42

i) 0,05

j) 4,5

k) 3,98

l) 1,02

m) 2,5

n) 15,6

o) 11,4

Leaner Section

Content

Activity: decimal fractions [lo 1.1.1, lo 1.3.2, lo 1.7.4, lo 1.10]

1. Did you know?

The decimal system was developed about 500 AD by the Hindu’s in India. Johannes Kepler, a mathematician in The Netherlands, used the decimal comma for the first time in the early 1600’s. Prior to this, mathematicians used circles or bars to show the decimal comma. John Napier, a Scot, was the first to use the decimal point in 1617. Today England and the USA still use a decimal point instead of a comma.

2. Do you still remember?

Divide into groups of four. Make a list of where we use decimal fractions in our everyday lives.

3. Let us revise

1 438,576 = 1 000 + 400 + 30 + 8 + 5 10 size 12{ { { size 8{5} } over { size 8{"10"} } } } {} + 7 100 size 12{ { { size 8{7} } over { size 8{"100"} } } } {} + 6 1 000 size 12{ { { size 8{6} } over { size 8{1`"000"} } } } {}

3.1 Write down the value of the underlined digit in each number below:

a) 532,1 6 8 ..................................................

b) 326,43 2 ..................................................

c) 2 91,567 ..................................................

d) 460, 2 31 ..................................................

e) 8 8 6,434 ..................................................

f) 1 467,23 9 ..................................................

g) 2 321,456 ..................................................

h) 3 641,9 8 5 ..................................................

i) 2 634, 5 27 ..................................................

j) 8 139,43 8 ..................................................

3.2 Complete the following:

e.g.. 5,3 = 5 + 3 10 size 12{ { { size 8{3} } over { size 8{"10"} } } } {}

a) 6,9 = 6 + ....................

b) 26,38 = 26 + .................... + ....................

c) 9,824 = 9 + .................... + .................... + ....................

d) 16,308 = 16 + .................... + ....................

4. Work together with a friend. Take turns to count aloud:

a) 3,8 ; 3,9 ; 4 ; 4,1 ; . . . to 8

b) 14 ; 13,5 ; 13 ; 12,5 ; . . . to 6

c) 2,4 ; 2,6 ; 2,8 ; . . . to 7

d) 18,8 ; 18,6 ; 18,4 ; to 10

5. Can you still remember?

If we want to add the same number continuously, e.g. 0,01 (one hundredth), we programme the calculator in this way : 0,01 + + = = =

a) Programme your calculator to add on 0,06 each time and complete:

0,06 ; ................. ; ................. ; ................. ; ................. ; ................. ;

................. ; ................. ; ................. ; ................. ; .................

b) Add on 0,009 each time (programme your calculator)

0,009 ; ................. ; ................. ; ................. ; ................. ;

................. ; ................. ; ................. ; ................. ; .................

c) Add on 3,7 each time with the help of you calculator:

3,7 ; ................. ; ................. ; ................. ; ................. ;

................. ; ................. ; ................. ; ................. ; .................

6. Complete the following WITHOUT a calculator:

a) 0,2 ; 0,4 ; 0,6 ; ................. ; ................. ; ................. ; .................

b) 7 ; 6,5 ; 6 ; ................. ; ................. ; ................. ; .................

c) 0,998 ; 0,995 ; 0,992 ; ............. ; ............. ; ............ ;........... ; ...........

d) 0,004 ; 0,008 ; 0,012 ; ............. ; ............. ; ............ ;........... ; ...........

7. BRAIN-TEASER!

Complete the following flow diagram. (You may use your calculator).

8. Let us see how well you do in the first mental test. Write down only the answers:

a) 0,7 + 0,3 = .................

b) 2,4 + 0,8 = .................

c) 0,35 + 0,4 = .................

d) 5 – 0,8 = .................

e) 0,8 + 0,6 = .................

f) 3,4 – 0,5 = .................

g) 3,45 – 0,3 = .................

h) 3,45 – 0,03 = .................

i) 2,45 – 2,4 = .................

j) 2,45 + 2,05 = .................

k) 4 – 0,02 = .................

l) 0,38 + 0,64 = .................

m) 1,25 + 1,25 = .................

n) 6,9 + 8,7 = .................

o) 15 – 3,6 = .................

(15)

9. Time for self-assessment

Assessment

Learning Outcome 1: The learner will be able to recognise, describe and represent numbers and their relationships, and to count, estimate, calculate and check with competence and confidence in solving problems.

Assessment Standard 1.1 We know this when the learner counts forwards and backwards in the following ways:

1.1.1 in decimal intervals;

Assessment Standard 1.3 We know this when the learner recognises, classifies and presents the following numbers in order to describe and compare them:

1.3.2 decimal (to at least three decimal places), fractions and percentages;

Assessment Standard 1.7: We know this when the learner estimates and calculates by selecting and using operations appropriate to solving problems that involve:

1.7.4 addition, subtraction and multiplication of positive decimals to at least 2 decimal places;

Assessment Standard 1.10: We know this when the learner uses a range of strategies to check solutions and judges the reasonableness of solutions.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Mathematics grade 7. OpenStax CNX. Sep 16, 2009 Download for free at http://cnx.org/content/col11075/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Mathematics grade 7' conversation and receive update notifications?

Ask