<< Chapter < Page Chapter >> Page >
Figure 12 . Output for script in Listing 7.
opposite = 3.9999851132269173 adjacent = 3

Very similar code

The code in Listing 7 is very similar to the code in Listing 3 and Listing 5 . The essential differences are that

  • Listing 3 uses the sine along with the opposite side and the hypotenuse.
  • Listing 5 uses the cosine along with the adjacent side and the hypotenuse.
  • Listing 7 uses the tangent along with the opposite side and the adjacent side.

You should be able to work through those differences without further explanation from me.

The cotangent of an angle

There is also something called the cotangent of an angle, which is simply the ratio of the adjacent side to the opposite side. If you know how to work withthe tangent, you don't ordinarily need to use the cotangent, so I won't discuss it further.

Computing length of opposite side with the Google calculator

We could also compute the length of the opposite side using the Google calculator.

The length of the opposite side -- sample computation

Enter the following into the Google search box:

3*tan(53.1301024 degrees)

The following will appear immediately below the search box:

3 * tan(53.1301024 degrees) = 4.00000001

Dealing with different quadrants

Up to this point, we have dealt exclusively with angles in the range of 0to 90 degrees (the first quadrant). As long as you stay in the first quadrant, things are relatively straightforward.

As you are probably aware, however, angles can range anywhere from 0 to 360 degrees (or more). Once you begin working with angles that are greater then 90 degrees,things become a little less straightforward.

Another svg file

When you downloaded the zip file named Phy1020.zip using the link given above , you should also have found that the zip file contains a file named Phy1020a1.svg.

The purpose of this file is to make it possible for you to create tactile graphics for sine and cosine curves using the procedure explained in the earliermodule named Manual Creation of Tactile Graphics .

If you have the ability to create tactile graphics, you don't need to perform the work in the following graph board exercise. However, you shouldread about it anyway because that will probably help you to better understand the sine and the cosine of an angle.

I will get back to tactile graphics after I describe the graph board exercise.

Another graph board exercise

In this graph board exercise, we will plot a graph of the amplitude of the sine of an angle on the vertical axis versus the angle itself onthe horizontal.

We will also do the same thing for the cosine. It would be very good if you could plot one curve on the top half of your graph board and the other curve onthe bottom half of your graph board so that you can easily compare the two.

Interpreting gridline values

Since I don't know how many tactile grid lines there are on your graph board, I can't tell you exactly how to interpret the grid lines so as to make maximumuse of the space on the board. All that I can tell you is that the vertical amplitude values for each curve will range from -1.0 to +1.0. We would like toplot values from -360 degrees to + 360 degrees on the horizontal. You should interpret the values of the gridlines on your graph board accordingly.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Accessible physics concepts for blind students. OpenStax CNX. Oct 02, 2015 Download for free at https://legacy.cnx.org/content/col11294/1.36
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Accessible physics concepts for blind students' conversation and receive update notifications?

Ask