<< Chapter < Page Chapter >> Page >
Introductory Statistics is intended for the one-semester introduction to statistics course for students who are not mathematics or engineering majors. It focuses on the interpretation of statistical results, especially in real world settings, and assumes that students have an understanding of intermediate algebra. In addition to end of section practice and homework sets, examples of each topic are explained step-by-step throughout the text and followed by a Try It problem that is designed as extra practice for students. This book also includes collaborative exercises and statistics labs designed to give students the opportunity to work together and explore key concepts. To support today’s student in understanding technology, this book features TI 83, 83+, 84, or 84+ calculator instructions at strategic points throughout. While the book has been built so that each chapter builds on the previous, it can be rearranged to accommodate any instructor’s particular needs.

About Introductory Statistics

This version of Introductory Statistics has been adapted by Nancy Chibry from the original version specifically for the one-semester Statistics 213 course at the University of Calgary. Introduction to statistics course and is geared toward students majoring in fields other than math or engineering. This text assumes students have been exposed to intermediate algebra, and it focuses on the applications of statistical knowledge rather than the theory behind it.

The foundation of this textbook is Collaborative Statistics , by Barbara Illowsky and Susan Dean. Additional topics, examples, and ample opportunities for practice have been added to each chapter. The development choices for this textbook were made with the guidance of many faculty members who are deeply involved in teaching this course. These choices led to innovations in art, terminology, and practical applications, all with a goal of increasing relevance and accessibility for students. We strove to make the discipline meaningful, so that students can draw from it a working knowledge that will enrich their future studies and help them make sense of the world around them.

Pedagogical foundation and features

  • Examples are placed strategically throughout the text to show students the step-by-step process of interpreting and solving statistical problems. To keep the text relevant for students, the examples are drawn from a broad spectrum of practical topics; these include examples about college life and learning, health and medicine, retail and business, and sports and entertainment.
  • Try It practice problems immediately follow many examples and give students the opportunity to practice as they read the text. They are usually based on practical and familiar topics, like the Examples themselves .
  • Collaborative Exercises provide an in-class scenario for students to work together to explore presented concepts.
  • Using the TI-83, 83+, 84, 84+ Calculator shows students step-by-step instructions to input problems into their calculator.
  • The Technology Icon indicates where the use of a TI calculator or computer software is recommended.
  • Practice, Homework, and Bringing It Together problems give the students problems at various degrees of difficulty while also including real-world scenarios to engage students.

Statistics labs

These innovative activities were developed by Barbara Illowsky and Susan Dean in order to offer students the experience of designing, implementing, and interpreting statistical analyses. They are drawn from actual experiments and data-gathering processes, and offer a unique hands-on and collaborative experience. The labs provide a foundation for further learning and classroom interaction that will produce a meaningful application of statistics.

Statistics Labs appear at the end of each chapter, and begin with student learning outcomes, general estimates for time on task, and any global implementation notes. Students are then provided step-by-step guidance, including sample data tables and calculation prompts. The detailed assistance will help the students successfully apply the concepts in the text and lay the groundwork for future collaborative or individual work.

About our team

Senior contributing authors

Barbara Illowsky De Anza College
Susan Dean De Anza College

Contributors

Abdulhamid Sukar Cameron University
Abraham Biggs Broward Community College
Adam Pennell Greensboro College
Alexander Kolovos
Andrew Wiesner Pennsylvania State University
Ann Flanigan Kapiolani Community College
Benjamin Ngwudike Jackson State University
Birgit Aquilonius West Valley College
Bryan Blount Kentucky Wesleyan College
Carol Olmstead De Anza College
Carol Weideman St. Petersburg College
Charles Ashbacher Upper Iowa University, Cedar Rapids
Charles Klein De Anza College
Cheryl Wartman University of Prince Edward Island
Cindy Moss Skyline College
Daniel Birmajer Nazareth College
David Bosworth Hutchinson Community College
David French Tidewater Community College
Dennis Walsh Middle Tennessee State University
Diane Mathios De Anza College
Ernest Bonat Portland Community College
Frank Snow De Anza College
George Bratton University of Central Arkansas
Inna Grushko De Anza College
Janice Hector De Anza College
Javier Rueda De Anza College
Jeffery Taub Maine Maritime Academy
Jim Helmreich Marist College
Jim Lucas De Anza College
Jing Chang College of Saint Mary
John Thomas College of Lake County
Jonathan Oaks Macomb Community College
Kathy Plum De Anza College
Larry Green Lake Tahoe Community College
Laurel Chiappetta University of Pittsburgh
Lenore Desilets De Anza College
Lisa Markus De Anza College
Lisa Rosenberg Elon University
Lynette Kenyon Collin County Community College
Mark Mills Central College
Mary Jo Kane De Anza College
Mary Teegarden San Diego Mesa College
Matthew Einsohn Prescott College
Mel Jacobsen Snow College
Michael Greenwich College of Southern Nevada
Miriam Masullo SUNY Purchase
Mo Geraghty De Anza College
Nydia Nelson St. Petersburg College
Philip J. Verrecchia York College of Pennsylvania
Robert Henderson Stephen F. Austin State University
Robert McDevitt Germanna Community College
Roberta Bloom De Anza College
Rupinder Sekhon De Anza College
Sara Lenhart Christopher Newport University
Sarah Boslaugh Kennesaw State University
Sheldon Lee Viterbo University
Sheri Boyd Rollins College
Sudipta Roy Kankakee Community College
Travis Short St. Petersburg College
Valier Hauber De Anza College
Vladimir Logvenenko De Anza College
Wendy Lightheart Lane Community College
Yvonne Sandoval Pima Community College

Sample ti technology

calculators
Disclaimer: The original calculator image(s) by Texas Instruments, Inc. are provided under CC-BY. Any subsequent modifications to the image(s) should be noted by the person making the modification. (Credit: ETmarcom TexasInstruments)

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introduction to statistics i - stat 213 - university of calgary - ver2015revb. OpenStax CNX. Oct 21, 2015 Download for free at http://legacy.cnx.org/content/col11874/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introduction to statistics i - stat 213 - university of calgary - ver2015revb' conversation and receive update notifications?

Ask