<< Chapter < Page Chapter >> Page >

Of course, other groups are also of interest. Carbon, silicon, and germanium, for example, have similar chemistries and are in Group 4 (Group IV). Carbon, in particular, is extraordinary in its ability to form many types of bonds and to be part of long chains, such as inorganic molecules. The large group of what are called transitional elements is characterized by the filling of the d size 12{d} {} subshells and crossing of energy levels. Heavier groups, such as the lanthanide series, are more complex—their shells do not fill in simple order. But the groups recognized by chemists such as Mendeleev have an explanation in the substructure of atoms.

Phet explorations: build an atom

Build an atom out of protons, neutrons, and electrons, and see how the element, charge, and mass change. Then play a game to test your ideas!

Build an Atom

Section summary

  • The state of a system is completely described by a complete set of quantum numbers. This set is written as n, l, m l , m s .
  • The Pauli exclusion principle says that no two electrons can have the same set of quantum numbers; that is, no two electrons can be in the same state.
  • This exclusion limits the number of electrons in atomic shells and subshells. Each value of n size 12{n} {} corresponds to a shell, and each value of l size 12{l} {} corresponds to a subshell.
  • The maximum number of electrons that can be in a subshell is 2 2 l + 1 size 12{2 left (2l+1 right )} {} .
  • The maximum number of electrons that can be in a shell is 2 n 2 size 12{2n rSup { size 8{2} } } {} .

Conceptual questions

Identify the shell, subshell, and number of electrons for the following: (a) 2 p 3 size 12{2p rSup { size 8{3} } } {} . (b) 4 d 9 size 12{4d rSup { size 8{9} } } {} . (c) 3 s 1 size 12{3s rSup { size 8{1} } } {} . (d) 5 g 16 size 12{5g rSup { size 8{"16"} } } {} .

Got questions? Get instant answers now!

Which of the following are not allowed? State which rule is violated for any that are not allowed. (a) 1 p 3 size 12{1p rSup { size 8{3} } } {} (b) 2 p 8 size 12{2p rSup { size 8{8} } } {} (c) 3 g 11 size 12{3g rSup { size 8{"11"} } } {} (d) 4 f 2 size 12{4f rSup { size 8{2} } } {}

Got questions? Get instant answers now!

Problem exercises

(a) How many electrons can be in the n = 4 size 12{n=4} {} shell?

(b) What are its subshells, and how many electrons can be in each?

(a) 32. (b) 2 in s , 6 in p , 10 in d , and 14 in f size 12{f} {} , for a total of 32.

Got questions? Get instant answers now!

(a) What is the minimum value of 1 for a subshell that has 11 electrons in it?

(b) If this subshell is in the n = 5 shell, what is the spectroscopic notation for this atom?

Got questions? Get instant answers now!

(a) If one subshell of an atom has 9 electrons in it, what is the minimum value of l size 12{l} {} ? (b) What is the spectroscopic notation for this atom, if this subshell is part of the n = 3 size 12{n=3} {} shell?

(a) 2

(b) 3 d 9 size 12{3d rSup { size 8{9} } } {}

Got questions? Get instant answers now!

(a) List all possible sets of quantum numbers n , l , m l , m s for the n = 3 shell, and determine the number of electrons that can be in the shell and each of its subshells.

(b) Show that the number of electrons in the shell equals 2 n 2 size 12{2n rSup { size 8{2} } } {} and that the number in each subshell is 2 2 l + 1 size 12{2 left (2l+1 right )} {} .

Got questions? Get instant answers now!

Which of the following spectroscopic notations are not allowed? (a) 5 s 1 (b) 1 d 1 (c) 4 s 3 (d) 3 p 7 (e) 5 g 15 . State which rule is violated for each that is not allowed.

(b) n l is violated,

(c) cannot have 3 electrons in s subshell since 3 > ( 2 l + 1 ) = 2

(d) cannot have 7 electrons in p subshell since 7 > ( 2 l + 1 ) = 2 ( 2 + 1 ) = 6

Got questions? Get instant answers now!

Which of the following spectroscopic notations are allowed (that is, which violate none of the rules regarding values of quantum numbers)? (a) 1 s 1 size 12{1s rSup { size 8{1} } } {} (b) 1 d 3 size 12{1d rSup { size 8{3} } } {} (c) 4 s 2 size 12{4s rSup { size 8{2} } } {} (d) 3 p 7 size 12{3p rSup { size 8{7} } } {} (e) 6 h 20 size 12{6h rSup { size 8{"20"} } } {}

Got questions? Get instant answers now!

(a) Using the Pauli exclusion principle and the rules relating the allowed values of the quantum numbers n , l , m l , m s size 12{ left (n,`l,`m rSub { size 8{l} } ,`m rSub { size 8{s} } right )} {} , prove that the maximum number of electrons in a subshell is 2 n 2 size 12{2n rSup { size 8{2} } } {} .

(b) In a similar manner, prove that the maximum number of electrons in a shell is 2 n 2 .

(a) The number of different values of m l size 12{m rSub { size 8{l} } } {} is ± l , ± ( l 1 ) , ..., 0 for each l > 0 size 12{l>0} {} and one for l = 0 ( 2 l + 1 ) . size 12{l=0 drarrow \( 2l+1 \) "." } {} Also an overall factor of 2 since each m l size 12{m rSub { size 8{l} } } {} can have m s size 12{m rSub { size 8{s} } } {} equal to either + 1 / 2 size 12{+1/2} {} or 1 / 2 2 ( 2 l + 1 ) size 12{ - 1/2 drarrow 2 \( 2l+1 \) } {} .

(b) for each value of l size 12{l} {} , you get 2 ( 2 l + 1 ) size 12{2 \( 2l+1 \) } {}

= 0, 1, 2, ..., ( n –1 ) 2 ( 2 ) ( 0 ) + 1 + ( 2 ) ( 1 ) + 1 + . . . . + ( 2 ) ( n 1 ) + 1 = 2 1 + 3 + . . . + ( 2 n 3 ) + ( 2 n 1 ) n terms size 12{ {}=0, 1," 2, " "." "." "." ", " \( "n–1" \) drarrow 2 left lbrace left [ \( 2 \) \( 0 \) +1 right ]+ left [ \( 2 \) \( 1 \) +1 right ]+ "." "." "." "." + left [ \( 2 \) \( n - 1 \) +1 right ] right rbrace = {2 left [1+3+ "." "." "." + \( 2n - 3 \) + \( 2n - 1 \) right ]} underbrace { size 8{n" terms"} } } {} to see that the expression in the box is = n 2 , imagine taking ( n 1 ) size 12{ \( n - 1 \) } {} from the last term and adding it to first term = 2 1 + ( n –1 ) + 3 + . . . + ( 2 n 3 ) + ( 2 n 1 ) ( n 1 ) = 2 n + 3 + . . . . + ( 2 n 3 ) + n . size 12{ {}=2 left [1+ \( n"–1" \) +3+ "." "." "." + \( 2n - 3 \) + \( 2n - 1 \) – \( n - 1 \) right ]=2 left [n+3+ "." "." "." "." + \( 2n - 3 \) +n right ]"." } {} Now take ( n 3 ) size 12{ \( n - 3 \) } {} from penultimate term and add to the second term 2 n + n + . . . + n + n n terms = 2 n 2 size 12{2 { left [n+n+ "." "." "." +n+n right ]} underbrace { size 8{n" terms"} } =2n rSup { size 8{2} } } {} .

Got questions? Get instant answers now!

Questions & Answers

explain the basic method of power of power rule under indices.
Sumo Reply
Why is b in the answer
Dahsolar Reply
how do you work it out?
Brad Reply
answer
Ernest
heheheehe
Nitin
(Pcos∅+qsin∅)/(pcos∅-psin∅)
John Reply
how to do that?
Rosemary Reply
what is it about?
Amoah
how to answer the activity
Chabelita Reply
how to solve the activity
Chabelita
solve for X,,4^X-6(2^)-16=0
Alieu Reply
x4xminus 2
Lominate
sobhan Singh jina uniwarcity tignomatry ka long answers tile questions
harish Reply
t he silly nut company makes two mixtures of nuts: mixture a and mixture b. a pound of mixture a contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $4. a pound of mixture b contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. the company has 1080
ZAHRO Reply
If  , , are the roots of the equation 3 2 0, x px qx r     Find the value of 1  .
Swetha Reply
Parts of a pole were painted red, blue and yellow. 3/5 of the pole was red and 7/8 was painted blue. What part was painted yellow?
Patrick Reply
Parts of the pole was painted red, blue and yellow. 3 /5 of the pole was red and 7 /8 was painted blue. What part was painted yellow?
Patrick
how I can simplify algebraic expressions
Katleho Reply
Lairene and Mae are joking that their combined ages equal Sam’s age. If Lairene is twice Mae’s age and Sam is 69 yrs old, what are Lairene’s and Mae’s ages?
Mary Reply
23yrs
Yeboah
lairenea's age is 23yrs
ACKA
hy
Katleho
Ello everyone
Katleho
Laurene is 46 yrs and Mae is 23 is
Solomon
hey people
christopher
age does not matter
christopher
solve for X, 4^x-6(2*)-16=0
Alieu
prove`x^3-3x-2cosA=0 (-π<A<=π
Mayank Reply
create a lesson plan about this lesson
Rose Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask