<< Chapter < Page Chapter >> Page >

Compressive sampling matching pursuit (cosamp)

Greedy pursuit algorithms (such as MP and OMP) alleviate the issue of computational complexity encountered in optimization-based sparse recovery, but lose the associated strong guarantees for uniform signal recovery, given a requisite number of measurements of the signal. In addition, it is unknown whether these greedy algorithms are robust to signal and/or measurement noise.

There have been some recent attempts to develop greedy algorithms (Regularized OMP  [link] , [link] , Compressive Sampling Matching Pursuit (CoSaMP)  [link] and Subspace Pursuit  [link] ) that bridge this gap between uniformity and complexity. Intriguingly, the restricted isometry property (RIP), developed in the context of analyzing 1 minimization , plays a central role in such algorithms. Indeed, if the matrix Φ satisfies the RIP of order K , this implies that every subset of K columns of the matrix is approximately orthonormal. This property is used to prove strong convergence results of these greedy-like methods.

One variant of such an approach is employed by the CoSaMP algorithm. An interesting feature of CoSaMP is that unlike MP, OMP and StOMP, new indices in a signal estimate can be added as well as deleted from the current set of chosen indices. In contrast, greedy pursuit algorithms suffer from the fact that a chosen index (or equivalently, a chosen atom from the dictionary Φ remains in the signal representation until the end. A brief description of CoSaMP is as follows: at the start of a given iteration i , suppose the signal estimate is x ^ i - 1 .

  • Form signal residual estimate: e Φ T r
  • Find the biggest 2 K coefficients of the signal residual e ; call this set of indices Ω .
  • Merge supports: T Ω supp ( x ^ i - 1 ) .
  • Form signal estimate b by subspace projection: b | T Φ T y , b | T C 0 .
  • Prune b by retaining its K largest coefficients. Call this new estimate x ^ i .
  • Update measurement residual: r y - Φ x ^ i .

This procedure is summarized in pseudocode form below.

Inputs: Measurement matrix Φ , measurements y , signal sparsity K Output: K -sparse approximation x ^ to true signal representation x Initialize: x ^ 0 = 0 , r = y ; i = 0 while ħalting criterion false do 1. i i + 1 2. e Φ T r {form signal residual estimate} 3. Ω supp ( T ( e , 2 K ) ) {prune signal residual estimate} 4. T Ω supp ( x ^ i - 1 ) {merge supports} 5. b | T Φ T y , b | T C {form signal estimate} 6. x ^ i T ( b , K ) {prune signal estimate} 7. r y - Φ x ^ i {update measurement residual} end while return x ^ x ^ i

As discussed in  [link] , the key computational issues for CoSaMP are the formation of the signal residual, and the method used for subspace projection in the signal estimation step. Under certain general assumptions, the computational cost of CoSaMP can be shown to be O ( M N ) , which is independent of the sparsity of the original signal. This represents an improvement over both greedy algorithms as well as convex methods.

While CoSaMP arguably represents the state of the art in sparse recovery algorithm performance, it possesses one drawback: the algorithm requires prior knowledge of the sparsity K of the target signal. An incorrect choice of input sparsity may lead to a worse guarantee than the actual error incurred by a weaker algorithm such as OMP. The stability bounds accompanying CoSaMP ensure that the error due to an incorrect parameter choice is bounded, but it is not yet known how these bounds translate into practice.

Iterative hard thresholding

Iterative Hard Thresholding (IHT) is a well-known algorithm for solving nonlinear inverse problems. The structure of IHT is simple: starting with an initial estimate x ^ 0 , iterative hard thresholding (IHT) obtains a sequence of estimates using the iteration:

x ^ i + 1 = T ( x ^ i + Φ T ( y - Φ x ^ i ) , K ) .

In  [link] , Blumensath and Davies proved that this sequence of iterations converges to a fixed point x ^ ; further, if the matrix Φ possesses the RIP, they showed that the recovered signal x ^ satisfies an instance-optimality guarantee of the type described earlier . The guarantees (as well as the proof technique) are reminiscent of the ones that are derived in the development of other algorithms such as ROMP and CoSaMP.

Discussion

While convex optimization techniques are powerful methods for computing sparse representations, there are also a variety of greedy/iterative methods for solving such problems. Greedy algorithms rely on iterative approximation of the signal coefficients and support, either by iteratively identifying the support of the signal until a convergence criterion is met, or alternatively by obtaining an improved estimate of the sparse signal at each iteration by accounting for the mismatch to the measured data. Some greedy methods can actually be shown to have performance guarantees that match those obtained for convex optimization approaches. In fact, some of the more sophisticated greedy algorithms are remarkably similar to those used for 1 minimization described previously . However, the techniques required to prove performance guarantees are substantially different. There also exist iterative techniques for sparse recovery based on message passing schemes for sparse graphical models. In fact, some greedy algorithms (such as those in  [link] , [link] ) can be directly interpreted as message passing methods  [link] .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, An introduction to compressive sensing. OpenStax CNX. Apr 02, 2011 Download for free at http://legacy.cnx.org/content/col11133/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'An introduction to compressive sensing' conversation and receive update notifications?

Ask