<< Chapter < Page | Chapter >> Page > |
Proof: Assume that a sequence in . Fix . Since is convergent, there must exist an such that for all . Now, pick . Then, using the triangle inequality, we have (since both and are greater or equal to ) and so . Therefore, the sequence is Cauchy.
One may wonder if the opposite is true: is every Cauchy sequence a convergent sequence?
Example 3 Focus on the metric space with . Now consider the sequence in . This is a Cauchy sequence: one can show this by picking and using the triangle inequality to get
However, this is not a convergent sequence: we've shown earlier that . Since and a sequence has a unique limit, then there is no such that .
Whether Cauchy sequences converge or not underlies the concept of completeness of a space.
Definition 4 A complete metric space is a metric space in which all Cauchy sequences are convergent sequences.
Example 5 The metric space with from earlier is not complete, since we found a Cauchy sequence that converges to a point outside of . We can make it complete by adding the convergence point, i.e., if then is a complete metric space.
Example 6 Let denote the space of all continuous functions with support . If we pick the metric , then is a metric space; however, it is not a complete metric space.
To show that the space is not complete, all we have to do is find a Cauchy sequence of signals within that does not converge to any signal in . For simplicity, fix . Fortuitously, we find the sequence illustrated in [link] , which can be written as
Since all these functions are continuous and defined over , then is a sequence in . We can show that is a Cauchy sequence: let be an integer and pick . Then,
So for a given , by picking such that (say, for example, ), we will have that for all ; thus, the sequence is Cauchy. Now, we must show that the sequence does not converge within : we will find a point such that for the sequence in . By inspecting the sequence of signals, we venture the guess
illustrated in [link] .
For this signal, we will have
So if we select such that , i.e., , then we have that for , and so we have shown that . Now, since a convergent sequence has a unique limit and , then does not converge in and this is not a complete metric space.
The property of equivalence between Cauchy sequences and convergent sequences often compels us to define metric spaces that are complete by choosing the metric appropriate to the signal space. For example, by switching the distance metric to , the metric space becomes complete.
Notification Switch
Would you like to follow the 'Signal theory' conversation and receive update notifications?