<< Chapter < Page Chapter >> Page >

Imagine a scenario where two CPUs are accessing different areas of memory using unit stride. Both CPUs access the first element in a cache line at the same time. The bus arbitrarily allows one CPU access to the memory. The first CPU fills a cache line and begins to process the data. The instant the first CPU has completed its cache line fill, the cache line fill for the second CPU begins. Once the second cache line fill has completed, the second CPU begins to process the data in its cache line. If the time to process the data in a cache line is longer than the time to fill a cache line, the cache line fill for processor two completes before the next cache line request arrives from processor one. Once the initial conflict is resolved, both processors appear to have conflict-free access to memory for the remainder of their unit-stride loops.

High cache hit rate reduces main memory traffic

This figure shows a main grey horizontal line, with two boxes labeled I/O connected below it, two boxes labeled Cache connected above it, and one box labeled Main Memory connected above it. Connected to each box labeled cache are arrows that point to an adjacent box labeled CPU.

In actuality, on some of the fastest bus-based systems, the memory bus is sufficiently fast that up to 20 processors can access memory using unit stride with very little conflict. If the processors are accessing memory using non-unit stride, bus and memory bank conflict becomes apparent, with fewer processors.

This bus architecture combined with local caches is very popular for general-purpose multiprocessing loads. The memory reference patterns for database or Internet servers generally consist of a combination of time periods with a small working set, and time periods that access large data structures using unit stride. Scientific codes tend to perform more non-unit-stride access than general-purpose codes. For this reason, the most expensive parallel-processing systems targeted at scientific codes tend to use crossbars connected to multibanked memory systems.

The main memory system is better shielded when a larger cache is used. For this reason, multiprocessors sometimes incorporate a two-tier cache system, where each processor uses its own small on-chip local cache, backed up by a larger second board-level cache with as much as 4 MB of memory. Only when neither can satisfy a memory request, or when data has to be written back to main memory, does a request go out over the bus or crossbar.

Coherency

Now, what happens when one CPU of a multiprocessor running a single program in parallel changes the value of a variable, and another CPU tries to read it? Where does the value come from? These questions are interesting because there can be multiple copies of each variable, and some of them can hold old or stale values.

For illustration, say that you are running a program with a shared variable A. Processor 1 changes the value of A and Processor 2 goes to read it.

Multiple copies of variable a

This figure shows a main horizontal grey line, with three items connected above the line. The first item is a box labeled cache, which is connected with a box labeled CPU 1. The second item is a box labeled cache, which is connected with a box labeled CPU 2. The third item is a large box labeled Main Memory.

In [link] , if Processor 1 is keeping A as a register-resident variable, then Processor 2 doesn’t stand a chance of getting the correct value when it goes to look for it. There is no way that 2 can know the contents of 1’s registers; so assume, at the very least, that Processor 1 writes the new value back out. Now the question is, where does the new value get stored? Does it remain in Processor 1’s cache? Is it written to main memory? Does it get updated in Processor 2’s cache?

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, High performance computing. OpenStax CNX. Aug 25, 2010 Download for free at http://cnx.org/content/col11136/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'High performance computing' conversation and receive update notifications?

Ask