<< Chapter < Page Chapter >> Page >

Hemostasis

This figure details the steps in the clotting of blood. Each step is shown along with a detailed text box describing the steps on the left. On the right, a signaling pathway shows the different chemical signals involved in the clotting process.
(a) An injury to a blood vessel initiates the process of hemostasis. Blood clotting involves three steps. First, vascular spasm constricts the flow of blood. Next, a platelet plug forms to temporarily seal small openings in the vessel. Coagulation then enables the repair of the vessel wall once the leakage of blood has stopped. (b) The synthesis of fibrin in blood clots involves either an intrinsic pathway or an extrinsic pathway, both of which lead to a common pathway. (credit a: Kevin MacKenzie)

Clotting factors involved in coagulation

In the coagulation cascade, chemicals called clotting factors    (or coagulation factors) prompt reactions that activate still more coagulation factors. The process is complex, but is initiated along two basic pathways:

  • The extrinsic pathway, which normally is triggered by trauma.
  • The intrinsic pathway, which begins in the bloodstream and is triggered by internal damage to the wall of the vessel.

Both of these merge into a third pathway, referred to as the common pathway (see [link] b ). All three pathways are dependent upon the 12 known clotting factors, including Ca 2+ and vitamin K ( [link] ). Clotting factors are secreted primarily by the liver and the platelets. The liver requires the fat-soluble vitamin K to produce many of them. Vitamin K (along with biotin and folate) is somewhat unusual among vitamins in that it is not only consumed in the diet but is also synthesized by bacteria residing in the large intestine. The calcium ion, considered factor IV, is derived from the diet and from the breakdown of bone. Some recent evidence indicates that activation of various clotting factors occurs on specific receptor sites on the surfaces of platelets.

The 12 clotting factors are numbered I through XIII according to the order of their discovery. Factor VI was once believed to be a distinct clotting factor, but is now thought to be identical to factor V. Rather than renumber the other factors, factor VI was allowed to remain as a placeholder and also a reminder that knowledge changes over time.

*Vitamin K required.
Clotting Factors
Factor number Name Type of molecule Source Pathway(s)
I Fibrinogen Plasma protein Liver Common; converted into fibrin
II Prothrombin Plasma protein Liver* Common; converted into thrombin
III Tissue thromboplastin or tissue factor Lipoprotein mixture Damaged cells and platelets Extrinsic
IV Calcium ions Inorganic ions in plasma Diet, platelets, bone matrix Entire process
V Proaccelerin Plasma protein Liver, platelets Extrinsic and intrinsic
VI Not used Not used Not used Not used
VII Proconvertin Plasma protein Liver * Extrinsic
VIII Antihemolytic factor A Plasma protein factor Platelets and endothelial cells Intrinsic; deficiency results in hemophilia A
IX Antihemolytic factor B (plasma thromboplastin component) Plasma protein Liver* Intrinsic; deficiency results in hemophilia B
X Stuart–Prower factor (thrombokinase) Protein Liver* Extrinsic and intrinsic
XI Antihemolytic factor C (plasma thromboplastin antecedent) Plasma protein Liver Intrinsic; deficiency results in hemophilia C
XII Hageman factor Plasma protein Liver Intrinsic; initiates clotting in vitro also activates plasmin
XIII Fibrin-stabilizing factor Plasma protein Liver, platelets Stabilizes fibrin; slows fibrinolysis

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask