<< Chapter < Page Chapter >> Page >

Answers:

1. Enter the following into the Google calculator and press Enter to produce the results shown.

  • convert 2205 lb to kg = 1000.17118 kilograms
  • convert 33.6 mph to m/s = 15.020544 meters / second
  • 1000 kg*15 m/s = 15000 m kg / s

Therefore, the initial momentum = 15000*kg*m/s at 0 degrees

2. 1000 kg*30 m/s = 30000 m kg / s at 0 degrees

3. 2000 kg*15 m/s = 30000 m kg / s at 0 degrees

4. 2000 kg*30 m/s = 60000 m kg / s at 0 degrees

Change in momentum due to change in speed and direction

A car with a weight of 10000 newtons is moving in a direction of 90 degrees at 40m/s. After going around a curve in the road, the car is moving in a direction of 0 degrees at 20 m/s. What is the change in momentum of the car?

Solution:

While this problem could be solved using the Google calculator, because of the number of steps involved, JavaScript is probably a better approach.

The solution script for this problem is shown in Listing 1 .

Listing 1 . Solution script.
<!---------------- File JavaScript01.html ---------------------><html><body><script language="JavaScript1.3">//The purpose of this function is to receive the adjacent // and opposite side values for a right triangle and to// return the angle in degrees in the correct quadrant. function getAngle(x,y){if((x == 0)&&(y == 0)){ //Angle is indeterminate. Just return zero.return 0; }else if((x == 0)&&(y>0)){ //Avoid divide by zero denominator.return 90; }else if((x == 0)&&(y<0)){ //Avoid divide by zero denominator.return -90; }else if((x<0)&&(y>= 0)){ //Correct to second quadrantreturn Math.atan(y/x)*180/Math.PI + 180; }else if((x<0)&&(y<= 0)){ //Correct to third quadrantreturn Math.atan(y/x)*180/Math.PI + 180; }else{//First and fourth quadrants. No correction required. return Math.atan(y/x)*180/Math.PI;}//end else }//end function getAngledocument.write("Start Script</br>"); var weight = 10000//Nvar g = 9.8// m/s^2 //Find the mass of the carvar mass = weight/g;// kg var ang1 = 90;//initial angle in degreesvar ang2 = 0; //final angle in degrees var speed1 = 40;//initial speed in m/svar speed2 = 20;//final speed in m/s var ang1r = ang1*Math.PI/180;//initial angle in radiansvar ang2r = ang2*Math.PI/180;//final angle in radians //Remember, momentum is a vector quantity and momenta must// be added and subtracted using vector arithmetic. //Compute the components of the change in momentum.var P1x = mass * speed1 * Math.cos(ang1r); var P1y = mass * speed1 * Math.sin(ang1r);var P2x = mass * speed2 * Math.cos(ang2r); var P2y = mass * speed2 * Math.sin(ang2r);var deltaPx = P2x-P1x;//change in horizontal component var deltaPy = P2y-P1y;//change in vertical component//Compute the magnitude of the change in momentum using // the Pythagorean theorem.var deltaPm = Math.sqrt(deltaPx*deltaPx + deltaPy*deltaPy); //Compute the angle of the change in momentum usiing// trigonometry. var deltaPa = getAngle(deltaPx,deltaPy);document.write("The givens." + "</br>"); document.write("weight = " + weight.toFixed(0)+ " kg</br>"); document.write("speed1 = " + speed1.toFixed(0)+ " m/s</br>"); document.write("angle 1 = " + ang1.toFixed(0)+ " degrees</br>"); document.write("speed2 = " + speed2.toFixed(0)+ " m/s</br>"); document.write("angle 2 = " + ang2.toFixed(0)+ " degrees</br>"); document.write("Computed mass." + "</br>"); document.write("mass = " + mass.toFixed(0) + " kg</br>"); document.write("Components of momentum vectors." + "</br>"); document.write("P1x = " + P1x.toFixed(0) + "</br>"); document.write("P1y = " + P1y.toFixed(0) + "</br>"); document.write("P2x = " + P2x.toFixed(0) + "</br>"); document.write("P2y = " + P2y.toFixed(0) + "</br>"); document.write("Components of momentum change vectors."+ "</br>"); document.write("deltaPx = " + deltaPx.toFixed(0) + "</br>"); document.write("deltaPy = " + deltaPy.toFixed(0) + "</br>"); document.write("Magnitude and angle of change vector."+ "</br>"); document.write("deltaPm = " + deltaPm.toFixed(0)+ " m kg/s</br>"); document.write("deltaPa = " + deltaPa.toFixed(0)+ " degrees</br>"); document.write("End Script");</script></body></html>

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Accessible physics concepts for blind students. OpenStax CNX. Oct 02, 2015 Download for free at https://legacy.cnx.org/content/col11294/1.36
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Accessible physics concepts for blind students' conversation and receive update notifications?

Ask