<< Chapter < Page | Chapter >> Page > |
icalcf.m
[x,y,t,u,px,py,p] = icalcf(X,Y,PX,PY)
is a function version of
icalc, which allows arbitrary naming of variables.
function [x,y,t,u,px,py,p] = icalcf(X,Y,PX,PY)% ICALCF [x,y,t,u,px,py,p] = icalcf(X,Y,PX,PY) Function version of icalc% Version of 5/3/95
% Allows arbitrary naming of variablesx = X;
y = Y;px = PX;
py = PY;if length(X) ~= length(PX)
error(' X and PX of different lengths')elseif length(Y) ~= length(PY)
error(' Y and PY of different lengths')end
[a,b]= meshgrid(PX,fliplr(PY));
p = a.*b; % Matrix of joint independent probabilities[t,u] = meshgrid(X,fliplr(Y)); % t, u matrices for joint calculations
icalc3.m Calculation setup for an independent class of three simple random variables.
% ICALC3 file icalc3.m Setup for three independent rv
% Version of 5/15/96% Sets up for calculations for three
% independent simple random variables% Uses m-functions rep, elrep, kronf
X = input('Enter row matrix of X-values ');Y = input('Enter row matrix of Y-values ');
Z = input('Enter row matrix of Z-values ');PX = input('Enter X probabilities ');
PY = input('Enter Y probabilities ');PZ = input('Enter Z probabilities ');
n = length(X);m = length(Y);
s = length(Z);[t,u] = meshgrid(X,Y);t = rep(t,1,s);
u = rep(u,1,s);v = elrep(Z,m,n); % t,u,v matrices for joint calculations
P = kronf(PZ,kronf(PX,PY'));disp('Use array operations on matrices X, Y, Z,')
disp('PX, PY, PZ, t, u, v, and P')
icalc4.m Calculation setup for an independent class of four simple random variables.
% ICALC4 file icalc4.m Setup for four independent rv
% Version of 5/15/96% Sets up for calculations for four
% independent simple random variables% Uses m-functions rep, elrep, kronf
X = input('Enter row matrix of X-values ');Y = input('Enter row matrix of Y-values ');
Z = input('Enter row matrix of Z-values ');W = input('Enter row matrix of W-values ');
PX = input('Enter X probabilities ');PY = input('Enter Y probabilities ');
PZ = input('Enter Z probabilities ');PW = input('Enter W probabilities ');
n = length(X);m = length(Y);
s = length(Z);r = length(W);
[t,u]= meshgrid(X,Y);
t = rep(t,r,s);u = rep(u,r,s);
[v,w]= meshgrid(Z,W);
v = elrep(v,m,n); % t,u,v,w matrices for joint calculationsw = elrep(w,m,n);
P = kronf(kronf(PZ,PW'),kronf(PX,PY'));disp('Use array operations on matrices X, Y, Z, W')
disp('PX, PY, PZ, PW, t, u, v, w, and P')
ddbn.m Uses the distribution of a simple random variable (or simple approximation) to plot a step graph for the distribution function F X .
% DDBN file ddbn.m Step graph of distribution function
% Version of 10/25/95% Plots step graph of dbn function FX from
% distribution of simple rv (or simple approximation)xc = input('Enter row matrix of VALUES ');
pc = input('Enter row matrix of PROBABILITIES ');m = length(xc);
FX = cumsum(pc);xt = [xc(1)-1-0.1*abs(xc(1)) xc xc(m)+1+0.1*abs(xc(m))];FX = [0 FX 1]; % Artificial extension of range and domainstairs(xt,FX) % Plot of stairstep graph
hold onplot(xt,FX,'o') % Marks values at jump
hold offgrid
xlabel('t')ylabel('u = F(t)')
title('Distribution Function')
Notification Switch
Would you like to follow the 'Applied probability' conversation and receive update notifications?