<< Chapter < Page | Chapter >> Page > |
For instance, a student’s research into deforestation of the Amazon under a sustainability studies paradigm would require investigation in a variety of fields not normally brought together under the traditional disciplinary regime. These fields might include plant biology, hydrology, and climatology, alongside economics, sociology, and the history and literature of post-colonial Brazil. Systems literacy, in a nutshell, combines the study of social history and cultural discourses with a technical understanding of ecosystem processes. Only this combination offers a comprehensive view of real-world environmental challenges as they are unfolding in the twenty-first century.
From the viewpoint of systems literacy sustainability studies works on two planes at once. Students of sustainability both acknowledge the absolute interdependence of human and natural systems—indeed that human beings and all their works are nothing if not natural—while at the same time recognizing that to solve our environmental problems we must often speak of the natural world and human societies as if they were separate entities governed by different rules. For instance, it is very useful to examine aspects of our human system as diachronic —as progressively evolving over historical time—while viewing natural systems more according to synchronic patterns of repetition and equilibrium. The diachronic features of human social evolution since 1500 would include the history of trade and finance, colonization and frontier development, and technology and urbanization, while examples of nature’s synchronicity would be exemplified in the migratory patterns of birds, plant and animal reproduction, or the microbial ecology of a lake or river. A diachronic view looks at the changes in a system over time, while the synchronic view examines the interrelated parts of the system at any given moment, assuming a stable state.
While the distinction between diachronic and synchronic systems is in some sense artificial, it does highlight the structural inevitability of dysfunction when the two interlocked systems operate on different timelines and principles. The early twentieth century appetite for rubber to service the emerging automobile industry, for instance, marks an important chapter in the “heroic” history of human technology, while signifying a very different transition in the history of forest ecosystems in Asia and Latin America. Human history since the agricultural transition 10,000 years ago, and on a much more dramatic scale in the last two hundred years, is full of such examples of new human technologies creating sudden, overwhelming demand for a natural resource previously ignored, and reshaping entire ecosystems over large areas in order to extract, transport and industrialize the newly commodified material.
For students in the humanities and social sciences, sustainability studies requires adoption of a new conceptual vocabulary drawn from the ecological sciences. Among the most important of these concepts is complexity . Biocomplexity —the chaotically variable interaction of organic elements on multiple scales—is the defining characteristic of all ecosystems, inclusive of humans. Biocomplexity science seeks to understand this nonlinear functioning of elements across multiple scales of time and space, from the molecular to the intercontinental, from the microsecond to millennia and deep time. Such an approach hasn’t been possible until very recently. For example, only since the development of (affordable) genomic sequencing in the last decade have biologists begun to investigate how environments regulate gene functions, and how changes in biophysical conditions place pressure on species selection and drive evolution.
Notification Switch
Would you like to follow the 'Sustainability: a comprehensive foundation' conversation and receive update notifications?