<< Chapter < Page | Chapter >> Page > |
Output của BPF tìm được bằng cách khai triển P (t) thành chuỗi F và tìm a1.
sm(t) = s(t) cos2fCt(4.12)
Phương trình (4.12) được viết cho hàm cổng có nửa thời gian cao và nửa thời gian zero. Nhưng sóng AM vẫn được tạo ra với bất kỳ trị giá nào của chu kỳ thao tác của xung.
Bộ phận tạo hàm cổngBộ phận tạo hàm cổng có thể là thụ động hoặc tác động hình 4.17 chỉ bộ phận biến điệu gồm 2 thành phần thụ động.
Hình 4.17a: Mạch tạo xung cổng thụ động dùng Switch.
cos2fctHình 4.17b: Mạch tạo xung cổng thụ động dùng diode.
- Hình 4.17a, SW đóng ngắt tuần hoàn. Khi SW hỡ, tín hiệu ra bằng tín hiệu vào. Khi SW đóng, tín hiệu ra bằng zero. R là điện trở nguồn. Bất lợi của SW cơ học là đóng ngắt chậm. Tần số đóng ngắt của SW phải bằng tần số sóng mang ( hoặc ước số, nếu ta chọn 1 họa tần ). Với tần số sóng mang cở MHz, SW cơ học không thể đáp ứng kịp.
- Hình 4.17b: Sự đóng ngắt thực hiện nhờ cầu diode. Khi cos2fCt dương ( điểm B có điện thế dương hơn điểm A ), cả 4 doide bị khóa: Mạch tương tự như hình 4.17a khi SW hỡ, tín hiệu ra là s(t). Ngược lại khi cos2fCt âm ( điểm B có điện thế âm hơn điểm A ). Cả 4 diode dẫn: mạch giống như hình 4.17a khi SW đóng. Giới hạn duy nhất cho mạch đóng ngắt nầy là tần số đóng ngắt của loại Diode được dùng. ( Tính không lý tưởng của các diode, thường là thời gian hồi phục ( recovery time ) của điện dung mối nối khá lớn so với chu kỳ sóng mang ).
- Hàm cổng còn có thể tạo được bằng cách dùng các linh kiện tác động, như transistor hoạt động giữa vùng khóa và vùng bảo hòa. Một transistor khóa, tương đương với một SW hỡ. Một transistor bảo hòa, xem như một SW đóng.
- Hình 4.18, trình bày một kiểu mạch biến điệu dọi là biến điệu vòng (ring modulator). Sóng mang là một sóng vuông, được đưa vào mối giữa của 2 biến thế. Output là một phiên bản bị “ cổng hóa “ của input, chỉ cần lọc là có được sóng AM .
Loại nầy dựa vào định luật: “ Bình phương của một tổng 2 hàm có chứa một số hạng là tích của 2 hàm đó “:
[s1(t)+s2(t)]2= s1 2 (t) + s2 2 (t)+2 s1(t).s2(t)
Nếu s1(t) là tín hiệu chứa tin và s2(t) là sóng mang, ta có:
[ s(t) + cos2fCt ]2 = s2(t) + cos2 2fCt + 2s(t) cos2fCt(4.13)
Số hạng thứ 2 chính là sóng AM mong muốn. Ta phải tìm cách tách nó ra khỏi 2 thành phần kia. Ta đã biết, sự tách sẽ đơn giãn, khi chúng không phủ nhau ( trong phạm vi thời gian hoặc phạm vi tần số ). Rỏ ràng, chúng phủ nhau về thời gian. Vậy, ta hãy xem phạm vi tần số.
Các xung lực tại gốc và 2fC kết quả của sự khai triển lượng giác
Cos2 =
Đường cong liên tục ở giữa ( tần số thấp ) chỉ biến đổi F của s2(t). Ta không biết dạng chính xác của s(t). Nhưng chỉ biết rằng ảnh F của nó bị giới hạn ở những tần số nhỏ hơn fm. Biến đổi F của s2(t) bị giới hạn ở những tần số dưới 2fm. Một cách để thấy điều đó là xem biến đổi F của s2(t) là phép chồng của S(f) lên chính nó. Phép chồng đồ hình cho thấy biến đổi nầy đi từ zero đến 2fm. Cách khác, là xem s(t) như là tổng của các hình sin có tần số (riêng) dưới fm. Khi bình phương tổng nầy, ta có kết quả là tất cả các tích của các số hạng. Điều nầy sẽ đưa đến tổng và hiệu của các tần số khác nhau ( dùng lượng giác). Không có tổng hay hiệu nào vượt quá 2fm nên tần số gốc không vượt quá fm.
Notification Switch
Would you like to follow the 'Cơ sở viễn thông' conversation and receive update notifications?