<< Chapter < Page Chapter >> Page >
P 1 + 1 2 ρv 1 2 + ρ gh 1 = P 2 + 1 2 ρv 2 2 + ρ gh 2 . size 12{P rSub { size 8{1} } + { {1} over {2} } ρv rSub { size 8{1} } "" lSup { size 8{2} } +ρ ital "gh" rSub { size 8{1} } =P rSub { size 8{2} } + { {1} over {2} } ρv rSub { size 8{2} } "" lSup { size 8{2} } +ρ ital "gh" rSub { size 8{2} } "." } {}

Bernoulli’s equation is a form of the conservation of energy principle. Note that the second and third terms are the kinetic and potential energy with m size 12{m} {} replaced by ρ size 12{ρ} {} . In fact, each term in the equation has units of energy per unit volume. We can prove this for the second term by substituting ρ = m / V size 12{ρ=m/V} {} into it and gathering terms:

1 2 ρv 2 = 1 2 mv 2 V = KE V . size 12{ { {1} over {2} } ρv rSup { size 8{2} } = { { { {1} over {2} } ital "mv" rSup { size 8{2} } } over {V} } = { {"KE"} over {V} } "."} {}

So 1 2 ρv 2 size 12{ { { size 8{1} } over { size 8{2} } } ρv rSup { size 8{2} } } {} is the kinetic energy per unit volume. Making the same substitution into the third term in the equation, we find

ρ gh = mgh V = PE g V , size 12{ρ ital "gh"= { { ital "mgh"} over {V} } = { {"PE" rSub { size 8{"g"} } } over {V} } "."} {}

so ρ gh size 12{ρ ital "gh"} {} is the gravitational potential energy per unit volume. Note that pressure P size 12{P} {} has units of energy per unit volume, too. Since P = F / A size 12{P=F/A} {} , its units are N/m 2 size 12{"N/m" rSup { size 8{2} } } {} . If we multiply these by m/m, we obtain N m/m 3 = J/m 3 size 12{N cdot "m/m" rSup { size 8{3} } ="J/m" rSup { size 8{3} } } {} , or energy per unit volume. Bernoulli’s equation is, in fact, just a convenient statement of conservation of energy for an incompressible fluid in the absence of friction.

Making connections: conservation of energy

Conservation of energy applied to fluid flow produces Bernoulli’s equation. The net work done by the fluid’s pressure results in changes in the fluid’s KE size 12{"KE"} {} and PE g size 12{"PE" rSub { size 8{g} } } {} per unit volume. If other forms of energy are involved in fluid flow, Bernoulli’s equation can be modified to take these forms into account. Such forms of energy include thermal energy dissipated because of fluid viscosity.

The general form of Bernoulli’s equation has three terms in it, and it is broadly applicable. To understand it better, we will look at a number of specific situations that simplify and illustrate its use and meaning.

Bernoulli’s equation for static fluids

Let us first consider the very simple situation where the fluid is static—that is, v 1 = v 2 = 0 size 12{v rSub { size 8{1} } =v rSub { size 8{2} } =0} {} . Bernoulli’s equation in that case is

P 1 + ρ gh 1 = P 2 + ρ gh 2 . size 12{P rSub { size 8{1} } +ρ ital "gh" rSub { size 8{1} } =P rSub { size 8{2} } +ρ ital "gh" rSub { size 8{2} } "."} {}

We can further simplify the equation by taking h 2 = 0 size 12{h rSub { size 8{2} } =0} {} (we can always choose some height to be zero, just as we often have done for other situations involving the gravitational force, and take all other heights to be relative to this). In that case, we get

P 2 = P 1 + ρ gh 1 . size 12{P rSub { size 8{2} } =P rSub { size 8{1} } +ρ ital "gh" rSub { size 8{1} } "."} {}

This equation tells us that, in static fluids, pressure increases with depth. As we go from point 1 to point 2 in the fluid, the depth increases by h 1 size 12{h rSub { size 8{1} } } {} , and consequently, P 2 size 12{P rSub { size 8{2} } } {} is greater than P 1 size 12{P rSub { size 8{1} } } {} by an amount ρ gh 1 size 12{ρ ital "gh" rSub { size 8{1} } } {} . In the very simplest case, P 1 size 12{P rSub { size 8{1} } } {} is zero at the top of the fluid, and we get the familiar relationship P = ρ gh size 12{P=ρ ital "gh"} {} . (Recall that P = ρgh size 12{P=hρg} {} and Δ PE g = mgh . size 12{Δ"PE" rSub { size 8{g} } = ital "mgh"} {} ) Bernoulli’s equation includes the fact that the pressure due to the weight of a fluid is ρ gh size 12{ρ ital "gh"} {} . Although we introduce Bernoulli’s equation for fluid flow, it includes much of what we studied for static fluids in the preceding chapter.

Bernoulli’s principle—bernoulli’s equation at constant depth

Another important situation is one in which the fluid moves but its depth is constant—that is, h 1 = h 2 size 12{h rSub { size 8{1} } =h rSub { size 8{2} } } {} . Under that condition, Bernoulli’s equation becomes

P 1 + 1 2 ρv 1 2 = P 2 + 1 2 ρv 2 2 . size 12{P rSub { size 8{1} } + { {1} over {2} } ρv rSub { size 8{1} } "" lSup { size 8{2} } =P rSub { size 8{2} } + { {1} over {2} } ρv rSub { size 8{2} } "" lSup { size 8{2} } "." } {}

Situations in which fluid flows at a constant depth are so important that this equation is often called Bernoulli’s principle    . It is Bernoulli’s equation for fluids at constant depth. (Note again that this applies to a small volume of fluid as we follow it along its path.) As we have just discussed, pressure drops as speed increases in a moving fluid. We can see this from Bernoulli’s principle. For example, if v 2 size 12{v rSub { size 8{2} } } {} is greater than v 1 size 12{v rSub { size 8{1} } } {} in the equation, then P 2 size 12{P rSub { size 8{2} } } {} must be less than P 1 size 12{P rSub { size 8{1} } } {} for the equality to hold.

Questions & Answers

material that allows electric current to pass through
Deng Reply
material which don't allow electric current is called
Deng
insulators
Covenant
how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask