<< Chapter < Page Chapter >> Page >

Mathematics

Common fractions

Educator section

Memorandum

14. a) denominator

b) common denominator

c) multiple

d) tellers

e) number

f) fractions

g) improper fractions

h) simplify

15.2 a)

= 12 21 size 12{ { { size 8{"12"} } over { size 8{"21"} } } } {} + 14 21 size 12{ { { size 8{"14"} } over { size 8{"21"} } } } {}

= 26 21 size 12{ { { size 8{"26"} } over { size 8{"21"} } } } {}

= 1 5 21 size 12{ { { size 8{5} } over { size 8{"21"} } } } {}

b)

= 5 10 size 12{ { { size 8{5} } over { size 8{"10"} } } } {} + 6 10 size 12{ { { size 8{6} } over { size 8{"10"} } } } {}

= 11 10 size 12{ { { size 8{"11"} } over { size 8{"10"} } } } {}

= 1 1 10 size 12{ { { size 8{1} } over { size 8{"10"} } } } {}

c)

= 36 45 size 12{ { { size 8{"36"} } over { size 8{"45"} } } } {} - 25 45 size 12{ { { size 8{"25"} } over { size 8{"45"} } } } {}

= 11 45 size 12{ { { size 8{"11"} } over { size 8{"45"} } } } {}

d)

= 4 6 size 12{ { { size 8{4} } over { size 8{6} } } } {} - 3 6 size 12{ { { size 8{3} } over { size 8{6} } } } {}

= 1 6 size 12{ { { size 8{1} } over { size 8{6} } } } {}

16.

a)

= 11 2 3 size 12{"11" { { size 8{2} } over { size 8{3} } } } {} + 1 7 size 12{ { { size 8{1} } over { size 8{7} } } } {}

= 11 14 21 size 12{"11" { { size 8{"14"} } over { size 8{"21"} } } } {} + 3 21 size 12{ { { size 8{3} } over { size 8{"21"} } } } {}

p = 11 17 21 size 12{"11" { { size 8{"17"} } over { size 8{"21"} } } } {}

b)

= 3 1 4 1 9 size 12{3 { { size 8{1} } over { size 8{4} } } - { { size 8{1} } over { size 8{9} } } } {}

= 3 9 36 4 36 size 12{ { { size 8{9} } over { size 8{"36"} } } - { { size 8{4} } over { size 8{"36"} } } } {}

t = 3 5 36 size 12{ { { size 8{5} } over { size 8{"36"} } } } {}

= 6 3 4 size 12{ { { size 8{3} } over { size 8{4} } } } {} – (3 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} + 1 2 3 size 12{ { { size 8{2} } over { size 8{3} } } } {} )

= 6 3 4 size 12{ { { size 8{3} } over { size 8{4} } } } {} – 3 3 6 size 12{ { { size 8{3} } over { size 8{6} } } } {} + 4 6 size 12{ { { size 8{4} } over { size 8{6} } } } {}

= 6 3 4 size 12{ { { size 8{3} } over { size 8{4} } } } {} – 4 1 6 size 12{ { { size 8{1} } over { size 8{6} } } } {}

= 2 9 12 size 12{ { { size 8{9} } over { size 8{"12"} } } } {} - 2 12 size 12{ { { size 8{2} } over { size 8{"12"} } } } {}

g = 2 7 12 size 12{ { { size 8{7} } over { size 8{"12"} } } } {}

d)

= 9 7 8 size 12{ { { size 8{7} } over { size 8{8} } } } {} - (4 9 12 size 12{ { { size 8{9} } over { size 8{"12"} } } } {} + 8 12 size 12{ { { size 8{8} } over { size 8{"12"} } } } {} )

= 9 7 8 size 12{ { { size 8{7} } over { size 8{8} } } } {} - 5 5 12 size 12{ { { size 8{5} } over { size 8{"12"} } } } {}

= 4 7 8 size 12{ { { size 8{7} } over { size 8{8} } } } {} - 5 12 size 12{ { { size 8{5} } over { size 8{"12"} } } } {}

= 4 21 24 size 12{ { { size 8{"21"} } over { size 8{"24"} } } } {} - 10 24 size 12{ { { size 8{"10"} } over { size 8{"24"} } } } {}

v = 4 11 24 size 12{ { { size 8{"11"} } over { size 8{"24"} } } } {}

Leaner section

Content

Activity: addition and subtraction of fractions [lo 1.7.3]

14. Addition and subtraction of fractions

LET US REVISE.

The answers to the following questions are hidden below.

Circle them when you find them and then complete the sentences.

a b t t t s o n k o f m n
d e n o m i n a t o r y u
e d e l u o a e n r a j m
n k l l l e a m d o c p e
o h a e t m l e i n t o r
m m v r i e d r g e i o a
i n i s p r f e s g o g t
n s u x l m g p t t n h o
a e q k e l v o l e s t r
t d e f s h j r k l e e s
o q w e r t y p y o l u h
r s d a z d o m u b g e s
s i m p l i f i e d e l h

a) We can only add or subtract fractions if the.................................................. are the same.

b) If the denominators differ, we must find .................................................. fractions with the same denominators.

c) We can find the common denominator easily by using ..................................................

d) We only add the.................................................. together.

e) The .................................................. stays unchanged when we add or subtract.

f) When we add mixed numbers together, we first add the natural numbers and then

the ..................................................

g) When we subtract mixed numbers, we can first change them to ................................................. fractions.

h) Answers must always be .................................................. as far as possible.

15.1 Do you still remember?

When we add or subtract e.g. one third ( 1 3 size 12{ { { size 8{1} } over { size 8{3} } } } {} ) + four fifths ( 4 5 size 12{ { { size 8{4} } over { size 8{5} } } } {} ) or five sixths ( 5 6 size 12{ { { size 8{5} } over { size 8{6} } } } {} ) – two nineths ( 2 9 size 12{ { { size 8{2} } over { size 8{9} } } } {} ) we must first make the DENOMINATORS the same. To do this we must look for the Lowest Common Multiple (LCM) .

If we want the LCM of 3 and 5 we can work as follows:

3: 3 ; 6 ; 9 ; 12 ; 15 ; 18 ; 21 ; etc.

5: 5 ; 10 ; 15 ; 20 ; 25 ; etc.

Thus we change both denominators to 15:
1 × 5
3 × 5
=
5
15
en
4 × 3
5 × 3
=
12
15

Thus: 1 3 + 4 5 5 15 + 12 15 17 15 1 2 15 alignl { stack { size 12{ { { size 8{1} } over { size 8{3} } } + { { size 8{4} } over { size 8{5} } } } {} #= { { size 8{5} } over { size 8{"15"} } } + { { size 8{"12"} } over { size 8{"15"} } } {} # = { { size 8{"17"} } over { size 8{"15"} } } {} #=1 { { size 8{2} } over { size 8{"15"} } } {} } } {}

15.2 Calculate the following:

a) x = 4 7 + 2 3 size 12{x= { { size 8{4} } over { size 8{7} } } + { { size 8{2} } over { size 8{3} } } } {}

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

b) y = 1 2 + 3 5 size 12{y= { { size 8{1} } over { size 8{2} } } + { { size 8{3} } over { size 8{5} } } } {}

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

c) d = 4 5 5 9 size 12{d= { { size 8{4} } over { size 8{5} } } - { { size 8{5} } over { size 8{9} } } } {}

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

d) k = 2 3 1 2 size 12{k= { { size 8{2} } over { size 8{3} } } - { { size 8{1} } over { size 8{2} } } } {}

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

16. Work together with a friend and calculate:

a) p = 7 2 3 + 4 1 7 size 12{p=7 { { size 8{2} } over { size 8{3} } } +4 { { size 8{1} } over { size 8{7} } } } {}

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

b) t = 5 1 4 2 1 9 size 12{t=5 { { size 8{1} } over { size 8{4} } } - 2 { { size 8{1} } over { size 8{9} } } } {}

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

c) g = 6 3 4 2 1 2 + 1 2 3 size 12{g=6 { { size 8{3} } over { size 8{4} } } - left (2 { { size 8{1} } over { size 8{2} } } +1 { { size 8{2} } over { size 8{3} } } right )} {}

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

d) v = 9 7 8 3 3 4 + 1 2 3 size 12{v=9 { { size 8{7} } over { size 8{8} } } - left (3 { { size 8{3} } over { size 8{4} } } +1 { { size 8{2} } over { size 8{3} } } right )} {}

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

17. CHALLENGE!

Divide into groups of three. Complete the following table by filling in the number of hours you spent doing homework last week:

NAME Mon Tues Wed Thur Fri
e.g Nomsa 1 1 2 size 12{1 { { size 8{1} } over { size 8{2} } } } {} 2 1 4 size 12{2 { { size 8{1} } over { size 8{4} } } } {} 3 3 4 size 12{3 { { size 8{3} } over { size 8{4} } } } {} 1 1 2 size 12{1 { { size 8{1} } over { size 8{2} } } } {} 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {}
1. ............................................... ............ ............ ............ ............ ............
2. ............................................... ............ ............ ............ ............ ............
3. ............................................... ............ ............ ............ ............ ............

Answer the following questions:

a) How many hours did each member of the group spend on homework last week?

1. _________________________________

2. _________________________________

3. _________________________________

b) Who spent the most time on homework? _______________________________

c) Who learnt the least? _________________________________

d) Calculate the difference between b en c’s answers.

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

e) Ask another group to check your answers.

Assessment

Learning Outcome 1: The learner will be able to recognise, describe and represent numbers and their relationships, and to count, estimate, calculate and check with competence and confidence in solving problems.

Assessment Standard 1.7: We know this when the learner estimates and calculates by selecting and using operations appropriate to solving problems that involve:

1.7.3: addition, subtraction and multiplication of common fractions.

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Mathematics grade 7. OpenStax CNX. Sep 16, 2009 Download for free at http://cnx.org/content/col11075/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Mathematics grade 7' conversation and receive update notifications?

Ask