<< Chapter < Page | Chapter >> Page > |
The concepts we used to find the arc length of a curve can be extended to find the surface area of a surface of revolution. Surface area is the total area of the outer layer of an object. For objects such as cubes or bricks, the surface area of the object is the sum of the areas of all of its faces. For curved surfaces, the situation is a little more complex. Let be a nonnegative smooth function over the interval We wish to find the surface area of the surface of revolution created by revolving the graph of around the as shown in the following figure.
As we have done many times before, we are going to partition the interval and approximate the surface area by calculating the surface area of simpler shapes. We start by using line segments to approximate the curve, as we did earlier in this section. For let be a regular partition of Then, for construct a line segment from the point to the point Now, revolve these line segments around the to generate an approximation of the surface of revolution as shown in the following figure.
Notice that when each line segment is revolved around the axis, it produces a band. These bands are actually pieces of cones (think of an ice cream cone with the pointy end cut off). A piece of a cone like this is called a frustum of a cone.
To find the surface area of the band, we need to find the lateral surface area, of the frustum (the area of just the slanted outside surface of the frustum, not including the areas of the top or bottom faces). Let and be the radii of the wide end and the narrow end of the frustum, respectively, and let be the slant height of the frustum as shown in the following figure.
We know the lateral surface area of a cone is given by
where is the radius of the base of the cone and is the slant height (see the following figure).
Since a frustum can be thought of as a piece of a cone, the lateral surface area of the frustum is given by the lateral surface area of the whole cone less the lateral surface area of the smaller cone (the pointy tip) that was cut off (see the following figure).
The cross-sections of the small cone and the large cone are similar triangles, so we see that
Solving for we get
Then the lateral surface area (SA) of the frustum is
Notification Switch
Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?