<< Chapter < Page Chapter >> Page >

Circles iv

  1. Find the values of the unknown letters.

Theorem 9 Two tangents drawn to a circle from the same point outside the circle are equal in length.

Proof :

Consider a circle, with centre O . Choose a point P outside the circle. Draw two tangents to the circle from point P , that meet the circle at A and B . Draw lines O A , O B and O P . The aim is to prove that A P = B P . In O A P and O B P ,

  1. O A = O B (radii)
  2. O A P = O P B = 90 ( O A A P and O B B P )
  3. O P is common to both triangles.

O A P O B P (right angle, hypotenuse, side) A P = B P

Circles v

  1. Find the value of the unknown lengths.

Theorem 10 The angle between a tangent and a chord, drawn at the point of contact of the chord, is equal to the angle which the chord subtends in the alternate segment.

Proof :

Consider a circle, with centre O . Draw a chord A B and a tangent S R to the circle at point B . Chord A B subtends angles at points P and Q on the minor and major arcs, respectively. Draw a diameter B T and join A to T . The aim is to prove that A P B ^ = A B R ^ and A Q B ^ = A B S ^ . First prove that A Q B ^ = A B S ^ as this result is needed to prove that A P B ^ = A B R ^ .

A B S ^ + A B T ^ = 90 ( TB SR ) B A T ^ = 90 ( 's at centre ) A B T ^ + A T B ^ = 90 ( sum of angles in BAT ) A B S ^ = A B T ^ However, AQB ^ = A T B ^ ( angles subtended by same chord AB ) A Q B ^ = A B S ^ S B Q ^ + Q B R ^ = 180 ( SBT is a str. line ) A P B ^ + A Q B ^ = 180 ( ABPQ is a cyclic quad ) S B Q ^ + Q B R ^ = A P B ^ + A Q B ^ AQB ^ = A B S ^ A P B ^ = A B R ^

Circles vi

  1. Find the values of the unknown letters.

Theorem 11 (Converse of [link] ) If the angle formed between a line, that is drawn through the end point of a chord, and the chord, is equal to the angle subtended by the chord in the alternate segment, then the line is a tangent to the circle.

Proof :

Consider a circle, with centre O and chord A B . Let line S R pass through point B . Chord A B subtends an angle at point Q such that A B S ^ = A Q B ^ . The aim is to prove that S B R is a tangent to the circle. By contradiction. Assume that S B R is not a tangent to the circle and draw X B Y such that X B Y is a tangent to the circle.

A B X ^ = A Q B ^ ( tan - chord theorem ) However , ABS ^ = A Q B ^ ( given ) A B X ^ = A B S ^ But , ABX ^ = A B S ^ + X B S ^ can only be true if , XBS ^ = 0

If X B S ^ is zero, then both X B Y and S B R coincide and S B R is a tangent to the circle.

Applying theorem [link]

  1. Show that Theorem [link] also applies to the following two cases:

B D is a tangent to the circle with centre O . B O A D . Prove that:
  1. C F O E is a cyclic quadrilateral
  2. F B = B C
  3. C O E / / / C B F
  4. C D 2 = E D . A D
  5. O E B C = C D C O

  1. F O E ^ = 90 ( BO OD ) F C E ^ = 90 ( subtended by diameter AE ) C F O E is a cyclic quad ( opposite 's supplementary )
  2. Let O E C ^ = x .

    F C B ^ = x ( between tangent BD and chord CE ) B F C ^ = x ( exterior to cyclic quad CFOE ) B F = B C ( sides opposite equal 's in isosceles BFC )
  3. C B F ^ = 180 - 2 x ( sum of 's in BFC ) O C = O E ( radii of circle O ) E C O ^ = x ( isosceles COE ) C O E ^ = 180 - 2 x ( sum of 's in COE )
    • C O E ^ = C B F ^
    • E C O ^ = F C B ^
    • O E C ^ = C F B ^
    C O E ||| C B F ( 3 's equal )
    1. In E D C

      C E D ^ = 180 - x ( 's on a str. line AD ) E C D ^ = 90 - x ( complementary 's )
    2. In A D C

      A C E ^ = 180 - x ( sum of 's ACE ^ and ECO ^ ) C A D ^ = 90 - x ( sum of 's in CAE )
    3. Lastly, A D C ^ = E D C ^ since they are the same .

    4. A D C ||| C D E ( 3 's equal ) E D C D = C D A D C D 2 = E D . A D
    1. O E = C D ( OEC is isosceles )
    2. In B C O

      O C B ^ = 90 ( radius OC on tangent BD ) C B O ^ = 180 - 2 x ( sum of 's in BFC )
    3. In O C D

      O C D ^ = 90 ( radius OC on tangent BD ) C O D ^ = 180 - 2 x ( sum of 's in OCE )
    4. Lastly, O C is a common side to both 's.

    5. B O C ||| O D C ( common side and 2 equal angles ) C O B C = C D C O O E B C = C D C O ( OE = CD isosceles OEC )

F D is drawn parallel to the tangent C B Prove that:
  1. F A D E is cyclic
  2. A F E ||| C B D
  3. F C . A G G H = D C . F E B D

  1. Let B C D = x

    C A H = x ( between tangent BC and chord CE ) F D C = x ( alternate , FD CB ) FADE is a cyclic quad ( chord FE subtends equal 's )
    1. Let F E A = y

      F D A = y ( 's subtended by same chord AF in cyclic quad FADE ) C B D = y ( corresponding 's, FD CB ) F E A = C B D
    2. B C D = F A E ( above )
    3. A F E = 180 - x - y ( 's in AFE ) C B D = 180 - x - y ( 's in CBD ) A F E ||| C B D ( 3 's equal )
    1. D C B D = F A F E D C . F E B D = F A
    2. A G G H = F A F C ( FG CH splits up lines AH and AC proportionally ) F A = F C . A G G H
    3. F C . A G G H = D C . F E B D

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 12 maths. OpenStax CNX. Aug 03, 2011 Download for free at http://cnx.org/content/col11242/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 12 maths' conversation and receive update notifications?

Ask