<< Chapter < Page | Chapter >> Page > |
Định lý
Tổ hợp lồ có tính chất bắc cầu.
b- Tập hợp lồi
Tập con S của Rn được gọi là tập hợp lồi khi S chứa toàn bộ đoạn thẳng nối hai điểmbất kỳ của S.
x + (1-)y S x,y,[0,1]
Tập hợp rỗng và tập hợp chỉ có một phần tử được xem là tập hợp lồi.
Định lý
Giao của một số bất kỳ các tập hợp lồi là một tập hợp lồi.
Nếu S là một tập hợp lồi thì S chứa mọi tổ hợp lồi của một họ điểm bất kỳ trong S.
c- Ðiểm cực biên của một tập hợp lồi
Ðiểm x trong tập lồi S Rn được gọi là điểm cực biên nếu không thể biểu diễn được x dưới dạng tổ hợp lồi thật sự của hai điểm phân biệt của S.
x
4- Ða diện lồi và tập lồi đa diện
Tập hợp S tất cả các tổ hợp của các điểm x1, x2,....,xm cho trước được gọi là đa diện lồi sinh ra bởi các điểm đó.
Đa diện lồi là một tập hợp lồi.
Trong đa diện lồi người ta có thể loại bỏ dần các điểm là tổ hợp của các điểm còn lại. Khi đó người ta thu được một hệ các điểm, giả sử là y1, y2,...,yp (pm) . Các điểm này chính là các điểm cực biên của đa diện lồi, chúng sinh ra đa diện lồi đó.
Số điểm cực biên của đa diện lồi là hữu hạn.
Siêu phẳng - Nửa không gian
A=[aij]m.n là ma trận cấp m.n
Ai (i=1,2,...,m) là hàng thứ i của A
Siêu phẳng trong Rn là tập các điểm x=[x1,x2,.....,xn]T thỏa
Ai x = bi
Nửa không gian trong Rn là tập các điểm x=[x1,x2,.....,xn]T thỏa
Ai x bi
Siêu phẳng và nửa không gian đều là các tập hợp lồi.
Giao của một số hữu hạn các nửa không gian trong Rn được gọi là tập lồi đa diện.
Tập lồi đa diện là một tập hợp lồi.
Nếu tập lồi đa diện không rỗng và giới nội thì đó là một đa diện lồi
Ðịnh lý
Tập hợp các phương án của một quy hoạch tuyến tính là một tập lồi đa diện.
Nếu tập hợp lồi đa diện này không rỗng và giới nội thì đó là một đa diện lồi, số điểm cực biên của nó là hữu hạn.
Ðịnh lý
Tập hợp các phương án tối ưu của một quy hoạch tuyến tính là một tập lồi.
Xét quy hoạch tuyến tính chính tắc
Giả sử A=[aij]m.n có cấp m.n, m n, rang(A)=m .
Gọi Aj (j=1,2,...,n) cột thứ j của ma trận A, quy hoạch tuyến tính chính tắc trên có thể viết :
Gọi S={x=[x1,x2,...,xn]T 0 / x1A1+ x2A2+...+ xnAn=b} là tập các phương án của bài toán.
S là một phương án khác 0.
Định lý
Điều kiện cần và đủ để x0 là phương án cực biên ( điểm cực biên của S) là các cột Aj ứng với >0 là độc lập tuyến tính.
Hệ quả
Số phương án cực biên của một quy hoạch tuyến tính chính tắc là hữu hạn. Số thành phần>0 của một phương án cực biên tối đa là bằng m.
Khi số thành phần>0 của một phương án cực biên bằng đúng m thì phương án đó được gọi là một phương án cơ sở.
Định lý
Nếu tập các phương án của một quy hoạch tuyến tính chính tắc không rỗng thì quy hoạch tuyến tính đó có ít nhất một phương án cực biên.
Bổ đề
Nếu
là một phương án tối ưu của quy hoạch tuyến tính.
x1, x2 là các phương án của quy hoạch tuyến tính.
là tổ hợp lồi thực sự của x1, x2
thì x1, x2 cũng là phương án tối ưu của quy hoạch tuyến tính.
Định lý
Nếu quy hoạch tuyến tính chính tắc có phương án tối ưu thì thì sẽ có ít nhất một phương án cực biên là phương án tối ưu.
Notification Switch
Would you like to follow the 'Quy hoạch tuyến tính' conversation and receive update notifications?