<< Chapter < Page Chapter >> Page >

Let’s revisit the example of the synthesis and breakdown of the food molecule, glucose. Remember that the building of complex molecules, such as sugars, from simpler ones is an anabolic process and requires energy. Therefore, the chemical reactions involved in anabolic processes are endergonic reactions. On the other hand, the catabolic process of breaking sugar down into simpler molecules releases energy in a series of exergonic reactions. Like the example of rust above, the breakdown of sugar involves spontaneous reactions, but these reactions don’t occur instantaneously. [link] shows some other examples of endergonic and exergonic reactions. Later sections will provide more information about what else is required to make even spontaneous reactions happen more efficiently.

Art connection

 Four photos show (a) a compost pile, (b) a baby chick emerging from a fertilized egg, (c) sand art, and (d) a ball rolling downhill.
Shown are some examples of endergonic processes (ones that require energy) and exergonic processes (ones that release energy). These include (a) a compost pile decomposing, (b) a chick hatching from a fertilized egg, (c) sand art being destroyed, and (d) a ball rolling down a hill. (credit a: modification of work by Natalie Maynor; credit b: modification of work by USDA; credit c: modification of work by “Athlex”/Flickr; credit d: modification of work by Harry Malsch)

Look at each of the processes shown, and decide if it is endergonic or exergonic. In each case, does enthalpy increase or decrease, and does entropy increase or decrease?

An important concept in the study of metabolism and energy is that of chemical equilibrium. Most chemical reactions are reversible. They can proceed in both directions, releasing energy into their environment in one direction, and absorbing it from the environment in the other direction ( [link] ). The same is true for the chemical reactions involved in cell metabolism, such as the breaking down and building up of proteins into and from individual amino acids, respectively.

The two plots show the change in Gibbs free energy as reactants are converted to products. Gibbs free energy decreases with time for an exergonic reaction (left), and the reaction is spontaneous. Gibbs free energy increases with time for an exergonic reaction (right), and the reaction is not spontaneous
Exergonic and endergonic reactions result in changes in Gibbs free energy. Exergonic reactions release energy; endergonic reactions require energy to proceed.

6.1c activation energy

There is another important concept that must be considered regarding endergonic and exergonic reactions. Even exergonic reactions require a small amount of energy input to get going before they can proceed with their energy-releasing steps. These reactions have a net release of energy, but still require some energy in the beginning. This small amount of energy input necessary for all chemical reactions to occur is called the activation energy     (or free energy of activation) and is abbreviated E A ( [link] ).

Why would an energy-releasing reaction actually require some energy to proceed? To get molecules into a state that allows bonds to break, the molecule must be somewhat contorted. A small energy input is required to achieve this contorted state. This contorted state is called the transition state     , and it is a high-energy, unstable state. For this reason, reactant molecules don’t last long in their transition state, but very quickly proceed to the next steps of the chemical reaction.

Practice Key Terms 8

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, General biology part i - mixed majors. OpenStax CNX. May 16, 2016 Download for free at http://legacy.cnx.org/content/col11749/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'General biology part i - mixed majors' conversation and receive update notifications?

Ask