<< Chapter < Page Chapter >> Page >

Predicting electron-pair geometry and molecular structure: xef 4

Of all the noble gases, xenon is the most reactive, frequently reacting with elements such as oxygen and fluorine. Predict the electron-pair geometry and molecular structure of the XeF 4 molecule.

Solution

The Lewis structure of XeF 4 indicates six regions of high electron density around the xenon atom: two lone pairs and four bonds:

A Lewis structure depicts a xenon atom with two lone pairs of electrons that is single bonded to four fluorine atoms, each with three lone pairs of electrons.

These six regions adopt an octahedral arrangement ( [link] ), which is the electron-pair geometry. To minimize repulsions, the lone pairs should be on opposite sides of the central atom ( [link] ). The five atoms are all in the same plane and have a square planar molecular structure.

Two diagrams are shown and labeled, “a” and “b.” Diagram a shows a xenon atom in the center of an eight-sided octahedral shape. Diagram b shows the same image as diagram a, but this time there are fluorine atoms located at the four corners of the shape in the horizontal plane. They are connected to the xenon by single lines.
(a) XeF 4 adopts an octahedral arrangement with two lone pairs (red lines) and four bonds in the electron-pair geometry. (b) The molecular structure is square planar with the lone pairs directly across from one another.

Check your learning

In a certain molecule, the central atom has three lone pairs and two bonds. What will the electron pair geometry and molecular structure be?

Answer:

electron pair geometry: trigonal bipyramidal; molecular structure: linear

Got questions? Get instant answers now!

Molecular structure for multicenter molecules

When a molecule or polyatomic ion has only one central atom, the molecular structure completely describes the shape of the molecule. Larger molecules do not have a single central atom, but are connected by a chain of interior atoms that each possess a “local” geometry. The way these local structures are oriented with respect to each other also influences the molecular shape, but such considerations are largely beyond the scope of this introductory discussion. For our purposes, we will only focus on determining the local structures.

Predicting structure in multicenter molecules

The Lewis structure for the simplest amino acid, glycine, H 2 NCH 2 CO 2 H, is shown here. Predict the local geometry for the nitrogen atom, the two carbon atoms, and the oxygen atom with a hydrogen atom attached:

A Lewis structure depicts a nitrogen atom with one lone pair of electrons that is single bonded to two hydrogen atoms and a carbon atom, which is, in turn, single bonded to two hydrogen atoms and another carbon atom. This carbon atom is double bonded to an oxygen atom with two lone pairs of electrons and single bonded to an oxygen that has two lone pairs of electrons and a single bond to a hydrogen atom.

Solution

A Lewis structure depicts a nitrogen atom with one lone pair of electrons that is single bonded to two hydrogen atoms and a carbon atom. The atoms described are drawn with bonds that indicate a three-dimensional, tetrahedral shape around the nitrogen atom. The carbon is, in turn, single bonded to two hydrogen atoms and another carbon atom, and again, a tetrahedral, three dimensional configuration is indicated by the types of bonds. This second carbon atom is double bonded to an oxygen atom and single bonded to an oxygen that has two lone pairs of electrons and a single bond to a hydrogen atom.

Consider each central atom independently. The electron-pair geometries:

  • nitrogen––four regions of electron density; tetrahedral
  • carbon ( C H 2 )––four regions of electron density; tetrahedral
  • carbon ( C O 2 )—three regions of electron density; trigonal planar
  • oxygen ( O H)—four regions of electron density; tetrahedral

The local structures:

  • nitrogen––three bonds, one lone pair; trigonal pyramidal
  • carbon ( C H 2 )—four bonds, no lone pairs; tetrahedral
  • carbon ( C O 2 )—three bonds (double bond counts as one bond), no lone pairs; trigonal planar
  • oxygen ( O H)—two bonds, two lone pairs; bent (109°)

Check your learning

Another amino acid is alanine, which has the Lewis structure shown here. Predict the electron-pair geometry and local structure of the nitrogen atom, the three carbon atoms, and the oxygen atom with hydrogen attached:

A Lewis structure depicts a nitrogen atom with two lone pairs of electrons that is single bonded to two hydrogen atoms and a carbon atom, which is, in turn, single bonded to a hydrogen atom, a methyl group and another carbon atom. This carbon atom is single bonded to an oxygen atom with two lone pairs of electrons and single bonded to an oxygen that has two lone pairs of electrons and a single bond to a hydrogen atom.

Answer:

electron-pair geometries: nitrogen––tetrahedral; carbon ( C H)—tetrahedral; carbon ( C H 3 )—tetrahedral; carbon ( C O 2 )—trigonal planar; oxygen ( O H)—tetrahedral; local structures: nitrogen—trigonal pyramidal; carbon ( C H)—tetrahedral; carbon ( C H 3 )—tetrahedral; carbon ( C O 2 )—trigonal planar; oxygen ( O H)—bent (109°)

Got questions? Get instant answers now!

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask