<< Chapter < Page Chapter >> Page >

Dalton also used data from Proust, as well as results from his own experiments, to formulate another interesting law. The law of multiple proportions    states that when two elements react to form more than one compound, a fixed mass of one element will react with masses of the other element in a ratio of small, whole numbers . For example, copper and chlorine can form a green, crystalline solid with a mass ratio of 0.558 g chlorine to 1 g copper, as well as a brown crystalline solid with a mass ratio of 1.116 g chlorine to 1 g copper. These ratios by themselves may not seem particularly interesting or informative; however, if we take a ratio of these ratios, we obtain a useful and possibly surprising result: a small, whole-number ratio.

1.116 g Cl 1 g Cu 0.558 g Cl 1 g Cu = 2 1

This 2-to-1 ratio means that the brown compound has twice the amount of chlorine per amount of copper as the green compound.

This can be explained by atomic theory if the copper-to-chlorine ratio in the brown compound is 1 copper atom to 2 chlorine atoms, and the ratio in the green compound is 1 copper atom to 1 chlorine atom. The ratio of chlorine atoms (and thus the ratio of their masses) is therefore 2 to 1 ( [link] ).

Figure A shows a pile of green powder. A callout shows that the green powder is made up of a lattice of copper atoms interspersed with chlorine atoms. The atoms are color coded brown for copper and green for chlorine. The number of copper atoms is equal to the number of chlorine atoms in the molecule. Figure B shows a pile of brown powder. A callout shows that the brown powder is also made up of copper and chlorine atoms similar to the molecule shown in figure A. However there appears to be two chlorine atoms for every copper atom in this molecule. The copper atoms in figure B bond with both the chlorine atoms and the other copper atoms. The copper atoms in figure A only bond with the chlorine atoms.
Compared to the copper chlorine compound in (a), where copper is represented by brown spheres and chlorine by green spheres, the copper chlorine compound in (b) has twice as many chlorine atoms per copper atom. (credit a: modification of work by “Benjah-bmm27”/Wikimedia Commons; credit b: modification of work by “Walkerma”/Wikimedia Commons)

Laws of definite and multiple proportions

A sample of compound A (a clear, colorless gas) is analyzed and found to contain 4.27 g carbon and 5.69 g oxygen. A sample of compound B (also a clear, colorless gas) is analyzed and found to contain 5.19 g carbon and 13.84 g oxygen. Are these data an example of the law of definite proportions, the law of multiple proportions, or neither? What do these data tell you about substances A and B?

Solution

In compound A, the mass ratio of carbon to oxygen is:
1.33 g O 1 g C

In compound B, the mass ratio of carbon to oxygen is:

2.67 g O 1 g C

The ratio of these ratios is:

1.33 g O 1 g C 2.67 g O 1 g C = 1 2

This supports the law of multiple proportions. This means that A and B are different compounds, with A having one-half as much carbon per amount of oxygen (or twice as much oxygen per amount of carbon) as B. A possible pair of compounds that would fit this relationship would be A = CO 2 and B = CO.

Check your learning

A sample of compound X (a clear, colorless, combustible liquid with a noticeable odor) is analyzed and found to contain 14.13 g carbon and 2.96 g hydrogen. A sample of compound Y (a clear, colorless, combustible liquid with a noticeable odor that is slightly different from X’s odor) is analyzed and found to contain 19.91 g carbon and 3.34 g hydrogen. Are these data an example of the law of definite proportions, the law of multiple proportions, or neither? What do these data tell you about substances X and Y?

Answer:

In compound X, the mass ratio of carbon to hydrogen is 14.13 g C 2.96 g H . In compound Y, the mass ratio of carbon to oxygen is 19.91 g C 3.34 g H . The ratio of these ratios is 14.13 g C 2.96 g H 19.91 g C 3.34 g H = 4.77 g C/g H 5.96 g C/g H = 0.800 = 4 5 . This small, whole-number ratio supports the law of multiple proportions. This means that X and Y are different compounds.

Got questions? Get instant answers now!

Key concepts and summary

The ancient Greeks proposed that matter consists of extremely small particles called atoms. Dalton postulated that each element has a characteristic type of atom that differs in properties from atoms of all other elements, and that atoms of different elements can combine in fixed, small, whole-number ratios to form compounds. Samples of a particular compound all have the same elemental proportions by mass. When two elements form different compounds, a given mass of one element will combine with masses of the other element in a small, whole-number ratio. During any chemical change, atoms are neither created nor destroyed.

Chemistry end of chapter exercises

In the following drawing, the green spheres represent atoms of a certain element. The purple spheres represent atoms of another element. If the spheres of different elements touch, they are part of a single unit of a compound. The following chemical change represented by these spheres may violate one of the ideas of Dalton’s atomic theory. Which one?

This equation contains the starting materials of a single, green sphere plus two smaller, purple spheres bonded together. When the starting materials are added together the products of the change are one purple sphere bonded with one green sphere plus one purple sphere bonded with one green sphere.

The starting materials consist of one green sphere and two purple spheres. The products consist of two green spheres and two purple spheres. This violates Dalton’s postulate that that atoms are not created during a chemical change, but are merely redistributed.

Got questions? Get instant answers now!

Which postulate of Dalton’s theory is consistent with the following observation concerning the weights of reactants and products? When 100 grams of solid calcium carbonate is heated, 44 grams of carbon dioxide and 56 grams of calcium oxide are produced.

Got questions? Get instant answers now!

Identify the postulate of Dalton’s theory that is violated by the following observations: 59.95% of one sample of titanium dioxide is titanium; 60.10% of a different sample of titanium dioxide is titanium.

This statement violates Dalton’s fourth postulate: In a given compound, the numbers of atoms of each type (and thus also the percentage) always have the same ratio.

Got questions? Get instant answers now!

Samples of compound X, Y, and Z are analyzed, with results shown here.

Compound Description Mass of Carbon Mass of Hydrogen
X clear, colorless, liquid with strong odor 1.776 g 0.148 g
Y clear, colorless, liquid with strong odor 1.974 g 0.329 g
Z clear, colorless, liquid with strong odor 7.812 g 0.651 g

Do these data provide example(s) of the law of definite proportions, the law of multiple proportions, neither, or both? What do these data tell you about compounds X, Y, and Z?

Got questions? Get instant answers now!
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask