<< Chapter < Page Chapter >> Page >

Most of the first transition series metals also dissolve in acids, forming a solution of the salt and hydrogen gas. For example:

Cr ( s ) + 2HCl ( a q ) CrCl 2 ( a q ) + H 2 ( g )

The polarity of bonds with transition metals varies based not only upon the electronegativities of the atoms involved but also upon the oxidation state of the transition metal. Remember that bond polarity is a continuous spectrum with electrons being shared evenly (covalent bonds) at one extreme and electrons being transferred completely (ionic bonds) at the other. No bond is ever 100% ionic, and the degree to which the electrons are evenly distributed determines many properties of the compound. Transition metal halides with low oxidation numbers form more ionic bonds. For example, titanium(II) chloride and titanium(III) chloride (TiCl 2 and TiCl 3 ) have high melting points that are characteristic of ionic compounds, but titanium(IV) chloride (TiCl 4 ) is a volatile liquid, consistent with having covalent titanium-chlorine bonds. All halides of the heavier d -block elements have significant covalent characteristics.

The covalent behavior of the transition metals with higher oxidation states is exemplified by the reaction of the metal tetrahalides with water. Like covalent silicon tetrachloride, both the titanium and vanadium tetrahalides react with water to give solutions containing the corresponding hydrohalic acids and the metal oxides:

SiCl 4 ( l ) + 2 H 2 O ( l ) SiO 2 ( s ) + 4HCl ( a q )
TiCl 4 ( l ) + 2 H 2 O ( l ) TiO 2 ( s ) + 4HCl ( a q )

Oxides

As with the halides, the nature of bonding in oxides of the transition elements is determined by the oxidation state of the metal. Oxides with low oxidation states tend to be more ionic, whereas those with higher oxidation states are more covalent. These variations in bonding are because the electronegativities of the elements are not fixed values. The electronegativity of an element increases with increasing oxidation state. Transition metals in low oxidation states have lower electronegativity values than oxygen; therefore, these metal oxides are ionic. Transition metals in very high oxidation states have electronegativity values close to that of oxygen, which leads to these oxides being covalent.

The oxides of the first transition series can be prepared by heating the metals in air. These oxides are Sc 2 O 3 , TiO 2 , V 2 O 5 , Cr 2 O 3 , Mn 3 O 4 , Fe 3 O 4 , Co 3 O 4 , NiO, and CuO.

Alternatively, these oxides and other oxides (with the metals in different oxidation states) can be produced by heating the corresponding hydroxides, carbonates, or oxalates in an inert atmosphere. Iron(II) oxide can be prepared by heating iron(II) oxalate, and cobalt(II) oxide is produced by heating cobalt(II) hydroxide:

FeC 2 O 4 ( s ) FeO ( s ) + CO ( g ) + CO 2 ( g )
Co(OH) 2 ( s ) CoO ( s ) + H 2 O ( g )

With the exception of CrO 3 and Mn 2 O 7 , transition metal oxides are not soluble in water. They can react with acids and, in a few cases, with bases. Overall, oxides of transition metals with the lowest oxidation states are basic (and react with acids), the intermediate ones are amphoteric, and the highest oxidation states are primarily acidic. Basic metal oxides at a low oxidation state react with aqueous acids to form solutions of salts and water. Examples include the reaction of cobalt(II) oxide accepting protons from nitric acid, and scandium(III) oxide accepting protons from hydrochloric acid:

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask