<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe structure and properties of nonmetals

The nonmetals are elements located in the upper right portion of the periodic table. Their properties and behavior are quite different from those of metals on the left side. Under normal conditions, more than half of the nonmetals are gases, one is a liquid, and the rest include some of the softest and hardest of solids. The nonmetals exhibit a rich variety of chemical behaviors. They include the most reactive and least reactive of elements, and they form many different ionic and covalent compounds. This section presents an overview of the properties and chemical behaviors of the nonmetals, as well as the chemistry of specific elements. Many of these nonmetals are important in biological systems.

In many cases, trends in electronegativity enable us to predict the type of bonding and the physical states in compounds involving the nonmetals. We know that electronegativity decreases as we move down a given group and increases as we move from left to right across a period. The nonmetals have higher electronegativities than do metals, and compounds formed between metals and nonmetals are generally ionic in nature because of the large differences in electronegativity between them. The metals form cations, the nonmetals form anions, and the resulting compounds are solids under normal conditions. On the other hand, compounds formed between two or more nonmetals have small differences in electronegativity between the atoms, and covalent bonding—sharing of electrons—results. These substances tend to be molecular in nature and are gases, liquids, or volatile solids at room temperature and pressure.

In normal chemical processes, nonmetals do not form monatomic positive ions (cations) because their ionization energies are too high. All monatomic nonmetal ions are anions; examples include the chloride ion, Cl , the nitride ion, N 3− , and the selenide ion, Se 2− .

The common oxidation states that the nonmetals exhibit in their ionic and covalent compounds are shown in [link] . Remember that an element exhibits a positive oxidation state when combined with a more electronegative element and that it exhibits a negative oxidation state when combined with a less electronegative element.

Six columns of information are shown. The first column has three pieces of data: “H,” “1 positive sign,” and “1 negative sign.” The second column has four pieces of data: “C,” “4 positive sign,” the word, “To,” and, “4 negative sign.” The third column has eight pieces of data: “N,” “5 positive sign,” the word, “To,” “3 negative sign,” “P, A s,” “5 positive sign,” “3 positive sign,” and “3 negative sign.” The fourth column has seven pieces of data: “O,” “1 negative sign,” “2 negative sign,” “S, S e,” “6 positive sign,” “4 positive sign,” and “2 negative sign.” The fifth column has eight pieces of data: “F,” “1 negative sign,” “C l, B r, I,” “7 positive sign,” “5 positive sign,” “3 positive sign,” “1 positive sign,” and “1 negative sign.” The sixth column has five pieces of data: “X e,” “8 positive sign,” “6 positive sign,” “4 positive sign,” and “2 positive sign.”
Nonmetals exhibit these common oxidation states in ionic and covalent compounds.

The first member of each nonmetal group exhibits different behaviors, in many respects, from the other group members. The reasons for this include smaller size, greater ionization energy, and (most important) the fact that the first member of each group has only four valence orbitals (one 2 s and three 2 p ) available for bonding, whereas other group members have empty d orbitals in their valence shells, making possible five, six, or even more bonds around the central atom. For example, nitrogen forms only NF 3, whereas phosphorus forms both PF 3 and PF 5 .

Another difference between the first group member and subsequent members is the greater ability of the first member to form π bonds. This is primarily a function of the smaller size of the first member of each group, which allows better overlap of atomic orbitals. Nonmetals, other than the first member of each group, rarely form π bonds to nonmetals that are the first member of a group. For example, sulfur-oxygen π bonds are well known, whereas sulfur does not normally form stable π bonds to itself.

Questions & Answers

write 150 organic compounds and name it and draw the structure
Joseph Reply
write 200 organic compounds and name it and draw the structure
Joseph
name 150 organic compounds and draw the structure
Joseph
organic chemistry is a science or social science discuss it's important to our country development
Musa Reply
what is chemistry
Terhemba Reply
what is the difference between ph and poh?
Abagaro Reply
chemical bond that results from the attractive force between shared electrons and nonmetals nucleus is what?
Abagaro
what is chemistry
Ayok
what is chemistry
ISIYAKA Reply
what is oxidation
Chidiebube Reply
calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask